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ABSTRACT
I

.Ths work involves urther deveopment o t-e

Recursive-iDPCM image data compression method. :he goal of

th s work is to make :he Recurs4ve-:DPCM more efficient

withou: increasing the coding complexity by adaptive

schemes.

The details of adaptive schemes are discussed.

Several algorithms of subimage activity classification are

proposed and evaluated. Optimum quantizers are designed

according to data sources to minimize quantization errcr.

Difference data are quantized adaptively based on -.e

* - -objective measure of subimage activity at each recursion.

The result of the computer simulation demonstrates a high

compression ratio with a good subjective reconstructed

image fidelity without drastically increasing computation

:-.me over that required for Recursive-IDPCM has been

rachieved.
'a
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CHAPTER I

INTRODUCTION

With the continuing growth of modern communication

I technology, the demand for image transmission and storage is

increasing rapidly. Limitations on bandwidth for

* transmitting image data over digital communication channels

have led researchers to look for efficient and feasible

* methods to compress image data under a given amount of

distor:ion. Before discussing various data :ompression

algoritnhms, it is necessary to examine how image data can be

i compressed.

The key point is that a large amount of redundancy

exists in a uniformly sampled image. This redundancy can be

explored both in the frequency and spatial domain.

V Removing, or at least reducing the redundant information

from the original image, is the goal of data compression.

Figure 1 contains the cosine transform of a 32 by 32 image.

It can be seen that the energy in the transform domain tends

to be c ustered into a relatively small number of transform

samples in the low-frequency region. To achieve data

compression, transform samples of low magnitude can be

discarded, or coarsely quantized in a digita'l transmission

IN 



I NTRODUCTI ON

This is the final report for the Grant Year 1984-1985 on Grant

Number AFOSR-8l-0170. During this year two pieces of research were

concluded under sponsorship of the Grant. The two research activities are

included as two separate divisions of this research report. The research

activities are as follows:

1. Adaptive Recursive Interpolated DPCM for image data compression

(ARIDPCM). A consistent theme in the research supported under Grant Number

AFOSR under Grant AFOSR-81-0170 has been novel methods of image data

compression that are suitable for implementation by optical processing.

Initial investigations led to the IDPCM method of image data compression.

Subsequent modifications to the IDPCM algorithm were investigated, and led

to the improvement of the algorithm for both image quality and decreased

3bit rate. The ARIDPCM version of the algorithm is the most powerful form

yet developed. The ARIDPCM algorithm was fully demonstrated in a M.Sc.

thesis by Mr. Eng Yuan Fu. This thesis is included as the section of this

report entitled "ARIDPCM."

2. Deblurring images through turbulent atmosphere. A common

problem in astronomy is the imaging of astronomical objects through the

turbulence caused by microscale fluctuations of the atmosphere. The

* microscale fluctuations limit the resolution of any object by ground-based

telescope, the phenomenon of stars h"twinkling" being the most commonly

1D t
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4? observed form of this degradation. This problem also has military

significance in limiting the ground-based observation of satellites in

earth orbit. As concerns about SDI arise, the observation of Soviet

satellites becomes more important, and this observation is limited by

p atmospheric turbulence. Research has been conducted under Grant Number

AFOSR-81-0170 to study the ability to use techniques such as optical and

digital computation in removing the blur from astronomical images caused by

P turbulence. This research culminated in a Ph.D. thesis by Dr. Karen West.

This thesis is included as the section of this report entitled "Correcting

Images for Atmospheric Turbulence."

TECHNOLOGY TRANSFER

We are pleased to report that the work sponsored as ARIDPCM has had

immediate transfer to a major government activity. The ARIDPCM method has

been utilized in a prototype system built by a contractor for a special

study. The success of this prototype has led to the designation of ARIDPCM

as a standard format for a special system. This special system, the

contractor, the sponsorship, and all details of the study are classified,

and Special Access Requirements apply to the detailed information.

However, AFOSR sponsorship of Grant Number AFOSR-81-0170 are essential to

the successful transfer of this research into a problem of national

significance and need.

2
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s vstem, without serious loss of resolution. 7n the spatia"

"omain, a Large number of p.ixeIs possesses low :nter-oxe

variance, or equivalentlv they are said to be h i :z

correlated. As a result, the adjacent-sample difference has

a much smaller variance than the original signal. This :act

is exploited in redundancy-removal for image data.

" 1.1 Concepts of Data Comoression

We recall the definition of an image element or

pixel, a digital image gray level P(i,j) which has been

' discretized both in spatial coordinates and in intensity.

Thus the image may be considered as a matrix whose row and

column index is a point in the image and the corresponding

matrix element value identifies the gray level at chat

point, i.e., the pixel value.

Two related concepts necessary to the understanding

of this thesis are the bit-rate and the compression ratio.
A basic problem in image data compression is to achieve the

minimum possible distortion for a given compression rate. or
equivalentlv, to achieve a given acceotable Level cq

distortion with the least possible compression ra:e. e

compression is characterized by bit rate, and i IS

specified as the number of bits per p:xe., 3?. een tie

compression ratio is defined as

4,

' t.
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Average bit rate of the original image data
Average bit rate of the zompressed data

:t is further necessary to define an objective and aU
subective image fidelity measure.

•he distortion can be sDecified either by an

objective measure as the root-mean-square error, RMSE, or zv

a subjective measure such as the mean opinion score, wh ch

s given by human observers 1. T he RMSE is used as an

objective measure of the performance of data compression

methods in this thesis, and it is defined as

!p Pv< "- N - P." i- P. .
RYSE =

where P.. is the original pixel, P.. is the reconstructed

pixel, and N is an original square image size.

1.2 IDPCM and !ts Variants

As mentioned above, many successful methods of data

compression have been developed both in the transform and

tne spata- domains in ret years d2 . Among data

tompression techniques in the spatial domain, extensive

efforts have been concentrated on the Differential ?lse
Code Modulation ,DPCM) syst. e •re ... method

Dart:icuar_': attractive because of its s:mple design and its

rapid speed of operation. whIch "as made its ;se In

real-time data compression of tele:ision signals possinle.

............................................. %



But its maor- drawbacks have bee n a-so pointed out in

t) .:s sensitive to var-an ces :. n :maze statistics c

is hfgn sensi::ve :c c-anne error, and (3) i: becomes

comp lex -3 :mpement vaen oter :odeIs are used suc a s

two- :2e~s ..- regress:ve 7:n .... .a verage mcc: s, and

7 e :n2ercoa-e: 7 D:ferentia" ?se P :

- '3ui:2 :? 3ata :omress:on me-nod -as pr zse:
.u7' as a :uter 7.: pme't on tre DC .e: 7.

A .ouR :nere are some sIM:Iar, :es between *- -en

methocs :s e:: rent n ,we ma'or ways:

a . 2-t3'7 e 2. . .a ree. .-: --,---

age :s zzcarnet by an _:terpo3t o2 operaa-n .,

J, be introou:ec in tne fol' owtng sector. nce n en n e

:DPCM metnod 'as been further .- :,roved One -s a -c-: - -

DPCM a I o: hm caI ed Recurslve-:'?FC! 6 and anc:-et

th e Adapt:ve ?ecursive- DPCM., h -.:c w:.i be exp a ne : - e

: oLowing sec:ions.

A high data compression ratio and a low RMSE have

been obta ne b : he Recursive-:DPCM method. Howev

reaL wor d :rmages the stat:stical properties of -ma2e .aca

vary rom one to ano:her, and even within a single :mage,

some regions may not be redundant (and therefore not

zonpressible,, and other regions may be very redundant.

4s desirable to perform data compression by perfectly

.1I% %V .- ,-.- ,. .. .. ". . . .. -. -- " . . " 'v .€ :- " ¢ €,."2.4 - . ?
j: ;'_i z; " ;"" L" ;' " ' _ L:' ' "" ;' 2/_ 2 ";..' ,' '_"".;. .'-. _ .:.':_ :....
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matchinig the activity of the data source. 7This naturallyv

* - leadsto the deve'ooment o0 anaatv eu ve_ DPCM

method. To apply an adaptive scheme, several oroblems have

to be solved. A suitabl e meas ure of ima ge ac tivit",y mu st be

*ob taiJne d, adaptive ouantization must be achieved, a nd the

image must be optimal : partitioned. The approaches to solv-

ing the above problems are examined in tn:s thesis, and once

..ey are solIv;e d, t he 2oa, of tne Ada;)t:ve Recursi ve-DPCM~

za a :cmpress, on met.noo is to ac h ie ve a ni:gh compression

~ai ha g oo C s ute tv e reconstructed .ma ge fidelity

.:tnou t drasttizall :n::-easing computation t .me over t ha t

rd-

%



CHAPTER 2

INTERPOLATED DPCM AND RECURSIVE
INTERPOLATED-DPCM

Before discussing the Adaptive Recursive-IDPCM

method, it is necessary to introduce the IDPCM and the

Recursive !DPCM methods.

2.1 IDPCM

The iDPCM data compression method was developed by

Hunt, as an optical analogy to DPCM. The IDPCM has some

similarity to DPCM, but rather than being based on

prediction of future pixel values, it uses interpolation.

The basic idea of IDPCM is to interpolate a subsampled image

in order to generate a low-frequency version image of the

original, and to quantize the difference between low- and

high-frequency information in a smaller number of bits than

the bits required for quantizing the entire pixel value.

For example, if we subsample an image by skipping 8 pixels

:n vertical and horizontal directions, the low-freauencv

.?version image in Figure 3 only requires 1.6% of the bits in

its original image. ror the difference image in Figure A,

Its histogram depicted in Figure 5 shows that most of the

d iference values are distributed in a very narrow region

'p
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around ne or:gin• ese d:::erence v a'ues :an t s te

,_artized in a smaLler number of b:ts ac:.:eve za a

comoression.

n e IDPcM me .od 5 :e, L fre;encv'version

of che original image is obtained by :he convolution

.. = ?r,s~h[(i-r),(j-s); ,3)

rs

where h is the point-spread-function o the interpolator.

The image P is constructed from the subsampled image by

inserting zeroes in place of the missing samples to make the

image N x N. The difference image between low- and

-igh-freauencv d(i i) = P(i 1 s :: e :s t n ;ant:ze:

The properties of P depend on the Jnter ca tion funztion,

The interpolative representation based on

minimization of the ensemble mean square interpolation error

was derived by an 14 However, :s m-nimnzat:on :s

only for stationary data. For a two-d:mensionaI si~na

,= ,1 ... N+. such that

M I

.,ie mean square error :- t.:e inteoc -:e-Z va

TI.ntmzed :

.. %

,~ ~ ~ ~ t ltkc. q! Fe.. . .- . . .. , . . . . . . ,- . . - . '
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t is k-nown that a -'arve numo.:er o: rea' worlc 'maoe z ata

does not possess stationar-:v f course some metnhods of

es:mating non-stat -onarv data cou c De emDloved to ootcm1cze

tne interpolator, but th ey might not b e feasible for a

r e aI- t ime compression system. Therefore, some kind o f

-approximation has to be adopted . in the !DPCM me t ho d, th e

Doint-spread-function h is approximated by a bi linear

* nterpolator kernel. For example, a 7 x 7bilinear kerne.

--s illustrated in Figure 6.

The 7DPCM operation is described as folLows:

.The original image is subsamoled at every f:o urth

Line and every fourth pixel, to create a subsampl'ed

image. Each subsample is quantized in 3 bits witn a

uniform quantizer, the maximum and minimum

quantization level being the maximum and minimum of

the original image.

2.Zeros are ' nserted into the missing data values i n

the subsampled i.mage to give an image of the

original size. This image is then conVo7lved with a

x 7 bilinear interpolator kernel w h ich i S

described _n ::igure 6.

-. The interpol.ated inmage is subtracted from thne orig-

na-, and the differences are quantized :n N, nits.

L% 11. 2



/ ,16 1/8 11/32 1/4 11/32 1/36

1/8 7/32 7/16 2/4 7/16 7/32 1 '8

11/32 7/16 3/8 3/4 3/8 7/16 11/32
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1/16 1/8 11/32 1/4 11/32 1/8 1/16

Figure 6. 7 x 7 Bilinear kernel.
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The quantization rule is a tapered cquantizer based

on the Laplacian probab4litv density >. wn:ch was

-ou.nd to be appcl.cable to the method ofIM

T. he subsamples and the quanti z ed differences are

then used to reconstruct the image.

T he ma jor at tract ive features o f the !DPCM me tho d

1. It is well suited for hardware implementation.

2. It achieves a high data compression ratio.

3. It is less sensitive to channel error than the DPCM

system. In the DPCM method, because the prediction

4s based on th!ie previous values , a channel er or

will affect not only the current prediction accuracy

but also all future prediction accuracy. However,

in the IDPCM system, channel error can only affect

the accuracy of pixels within an interpolation

kernel and usually only one pixel's accuracy because

a large amount of the transmitted data is

idifferences.

.Since the IDPCM is a non-causal operation, it may be

operated in parallel.

Since the introduction o:h ths method, several

developments to the IDPCM data compression method have been

- "2achieved, as discussed below.
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s. Recursive :DPC

A sign:fian: improvement of .D? M, called Recursi.e

DPCM, was achieved by Hun: and Cao 6 One-dimensional

, Recurs ve-iDPCM -s drawn n Figure 7 and discussed as

owows.

n Figure :he pixel values P( n-2) and P(n-2) are

subsamples. They are quantized in 6 bits and are used to

interpolate the middle point c. Then the difference between

the interpolated value c and the original value C, cC, is

quantized to calculate c'c. The reconstructed middle point

vaue which is the sum of the quantized difference c 7 and

the interpoclated value -together w-cth subsampLes ?'n- ant

?(n-2 is used to interpol ate the pixe! values at :onts n-I

and n-l, which are b and d. The differences b'D and d'd are

also quantized. The difference c' is defined as the first

3 set of difference, and the b'b and d'd are the second set of

differences. It is obvious that the second set of

differences is calculated by the reconstructed value c' and

subsamples A and E; therefore, they will be smaller than the

rst set of difference. This imolies that the required

number of quantization bits will be reduced.

In the two-dimensional case the low-frequency

version of the original image, rather than being obtained by

one time convolution, is accomplished by performing the

interpolation recursively. The recursive process is:

% % %
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(2 subsample the original image (e.g., subsample the image

Ssk i.pping pixels both in vertical and horizontal

directions) and quantize the subimage at 6 bits ,tne

original image pixel values are quantized in 8 bits, but

/.- usually human eyes can only distinguish 32-64 gray levels, 6

bits are surricient); (2) insert zeros into the subsampled

image to double its size and then convolve the oDtained

image with a 3 x 3 bilinear kernel; (3) subtract the

interpolated values from their corresponding original pixel
V

values and quantize this first set of differences (the above

process is shown in Figure 8); and (4) the sum of the

quantized differences and the interpolated values together

S with the previous 64 by 64 subsamples form a finer subsample

image, 128 by 128. The above process is repeated until

reaching the original image size, 512 by 512. During this

process, the size of a subsample image increases from 64 x

64, to 128 x 128, to 256 x 256. By the recursive scheme,

the subsamples come closer and closer, and the differences

between high- and low-frequency versions will become

Ssuccessive] smaller. Finally only the first subsample

image and all sets of quantized differences need to be trans-

* mitted. For low variant data, the second set of differences

could be assigned no quantization bits. his omssion of

the last set and possibly the next to the last set of

difference values can save a substantial number of bits.

AI"
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in principle, the above process can be repeated many

" imes depending on the subsample's density, and ever;v

recursion wil reduce the interpolated interval by hai.

Therefore, the recursive process has a property that everv

recursion can reduce the bit rate. The bit assignment of

the Recursive-IDPCM between subsamples are shown in Figure

* 9. The overall bit requirement for a reconstructed image is

Total bits = 6 x (N/Im) 2 + 3ND(NIM) 2 + [2(ND2)(N/m) 2 1

(6)

where

-'" N = original image size

I M = number of pixels by which subsamples are separ-

ated

NDl number of bits for quantizing the first set

differences

ND2 - number of bits for quantizing the second set

differences

R'DPCM is a very efficient data compression method

which has achieved a bit rate below C. and mean-square

error below 0.2%. Also it is a very simple a' goritnm to be

implemented for a real-time data compression system.

S/-. However, this method is used to compress an ent:re

,- [ -mage without regard to the amount of detail in an'y'

particular area of an image. A further improvement is to

~%
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6 02 0 3 0 2 0 6 6 0 0 3 0 0 3 0 0 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 20202 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 3 0 0 3

3 0 2 0 3 0 2 0 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 2 0 2 0 2 0 2 3 0 0 3 0 0 3 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 2 0 3 0 2 0 6 0 0 0 0 0 0 0 0 0 0
6 0 0 3 0 0 C 0 6

a. b.

Figure 9. Bit assignment for one interpolation kernel. --
(a) Bit assignment for subsamples skipping 9
pixels; and (b) Bit assignment for subsamples
skipping 9 pixels.
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..,, make Recursive IDPCM adaptive, which will be presened :n

.'..', .the following sections.
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CHAPTER 3

ADAPTIVE RECURSIVE-IDPCM METHOD

In most present image data transmission systems, the

sampling rate is set on the basis of the fastest expected
aO

response from the data source and not on the basis of the

* quiescent or normal value. The main advantage of an

* adaptive data compression system is its ability to increase

the compression efficiency to a maximum for the specified

data with tolerable loss of information. The approach of

the adaptive Recursive-IDPCM method is to divide an image

into subimages where a high bit rate is required to quantize

relatively complex subimages but a low bit rate is

sufficient for relatively simple subimages. To match the

sampling rate and the quantization level to the subimage

data activity or complexity would require an activity

classifier. The statistics of each class of subimages is

r calculated for designing proper quantizers. The subimage

classification, the quantizer design, and tne subimage size

are discussed in the following sections.

3.1 Subimage Classification

Subimages are classified by level of activitv.

, According to human visual acuity, three levels of activity

) 2,p -.



ar e suggested h. detail, ow teta,:_ , anz average

dea he a i I ae:a:l Iuiae are -e-f.e as netg.Kbcr-

noods or shar-, gra%-Ieve. trans- tons a r .ow-detai.7

su .Dimages as neighborhoods of smooth gray-level :rari:"ons.

.n e subimage a ct iv ity v s measured by statistical ima ge

information, and three approaches are proposed. He r e, we

dP define high detail as class 1, average detail as class 2,

and low detail as class 3.

Subimage Classification by

Calculating Sample Variance

Generally, simple descriptions of the waveform are

provided by the quantit jes "91

N N
= I/N X~n), a=1/0N-1) '(X(n)-
n= n=l

(7)

c all e d, respectively, the sample mean and sample variance.

The quantity v the square root of the saMple variance, i s

c alle d the standard deviation . -or two-dimensional i mage

* data, the sample mean and sample variance are defined as

n n

* *. = (/n) 2. i+k, j-1
* ~'-k=1 L1l

2 2
n -n

~ij l/(-l)K= L=I



where n -s :he size of square subimages and P is a xeI

va Iue. The classifiCation of sub-mage activity is performe-

bv comparing - wit" a orevious'}, def:ned thresholts e.g.,

= 30, I Z 15 0 ,T = 0.0)

ehig d ai I '

Subimage ActivitV average detail T2 < -, < T!

, low detail T3 K "<.'

Figures 10, 11 and 12 show the results of the classification

of subimage activity. By this method, the quant tat ve

measure basically agree with the subjective measure. Most

detailed rezions such as the : .l's eves, the feather, an

sharp edges were classified into class one, and most fa:

regions, like the background, the girl's shoulder, etc.,

were classified into class three. But this classIf:cation

method has the following problems. in some cases there is a

wrong classification on sharp edges between dark and bright

regions. For example, if we assume that the subimages have

the type of patterns in Figure 14, the variances of these

subima3es are relatively smal1. in other words, these

subimages w I be classified into class 2 or class 3.

"sual>" this tpe of subimages are on sharp edges between

dark and bright regions. :gzure 15 is the reconstructed

ma ge of :ne Adaoiv e Recursive-iDPCM, and the subimage

classi::cation :s basel on Equation S. When this image is

14
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Figure 14. Subimages on sharp edges.
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enlarged, Figure 16, we can see that the sharp edge between

tne girl's shoulder and the dark background was badly

reconstructed. This is because the subimages :over/ng this

- edge were not correctly classified. As a result,

insufficient bit rate was assigned to those subimages.

i Since the distortion along sharp edges is particularly

sensitive to human eyes, the above classification is not

satisfactory. The second problem is that the calculation of

cannot be done concurrently during the recursive
~-.J

process. This will cost much more machine time than the

Recursive IDPCM; therefore, this approach is not desirable

-or real-time implementation. The third problem is that the

infortation of each subimase activity has to be transmitted

to the receiver. This will cost some bits.

Subimage Classification Based
on the Variance of Differences

The subimage activity can be associated with the

statistical property of the diff"erences between interpolated

and original values. This is possible because the

.n t.er polat on error will be small when neighboring pixeIs

have low variance or will be large when neighboring pixels

nave large variance. Now def ine the sample mean and sample

variance of difference data as

L-
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j= /n 7(d + )

a = 1/(n-l) 2  (kd 2 (9)
KL i+k j.l -

where

k,L 0, 4 n- I

K ? L= 0

i,j (1, n+l, 2n+l....,N+l)

n subimage size

T n Figure 5, the histogram of difference data has a Laplace

d ,- distribution and is around the origin; therefore, the s-ample

mean is approximately equal to zero

and[2

2= /(n-1) (di k 2.l) (10)

OR The aij is used to represent the activity of subimages,

igh detail Ti <

The activity of subimages average detail T2 < OL ij TI

low detail Kij 2

This approach has a satisfactory performance of subimage

classification. In Figure 17, class one subimages, we can

see that most sharp edges, the detailed regions such as the

girl's eyes and the feather, are classified. In Figure I
class three, most of the fiat regions are also classified,

p"

. ., .



I IL
e ,a c n bv v r a c

e5 ow cea !

.4it



IA
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and in F,.gure 19 is class Z, in between :aIasses I and 3.

-q ! uat ion_ 10, :he .patterns- i n 7 ur_ e. .i 'n e

liass fe d into tne c lass of low ceta: " :_ca.:se te errcr :

interpolation is large.

Another important advantage of :-:s approach sncu I

.De pointed out. Since the difference ta:a conta:ns :-e

information of the subimage activity and they are to be

transmitted, it is not necessary to transmit the extra bits

;:or indexing each subimage activity. Thus, a slig'ht bit

reduction could be obtained.

Multiplication and square root operations require

much longer machine tnme than addition an, ogi: operations

nfortunately :he above algorithm has brought a large amount

of multiplication operations, which is opposite to the goal

of a real-time data compression system. A desirable feature

of a data compression method is to have not only a high

compression ratio but also a fast operation. This demand

leads to our third approach to the subimage classification.

Subimage Classification by the

Absolute Values of Differences

As mentioned above, addition and logic operations

are preferred for subimage classification. Gimlett 'i0

suggested that "the weighted sum of the absolute values of

* the transform coefficients, defined herein as the activitv

index, is proposed as an objective measure of scene business

% I "



"or adaptive transform image coding. i s :dea is ado-e d

-t e spa-al domain.

.ne measure o: subimage activitv is de:inec as
p

- n -d

L = o .

where n is a subimage size, d :s difference. s

algoritm performs the class-fica:ion aso very well, and

the results, Figres 20, 21 and i, also match cur

sub'ective measure. Compared with the second approach, -..

machine time is reduced about one/third. Hence the th:rd

approach :s consldered a success:u metnod to ob jec z-e- y

measure the su::mage activity, and w:.l be used to

classify- the activitv of subimages,

h hih det a 1 3 >
The act'.v:ty of subimages Javerage detail 2 TI

e.low deta:l :2 >

3 .2 Ontcmal Ouanttzat:or

After the interpolation, the d fferences wil pass

through a Quantizer. The quantized d:fferences then e

transmitted. A quantizer is a device wose output can nave

only a limited number of possible values. Each input e:-er

analog or i i al sgna it- forced to one of the allowable%"

output values. he inout range is i v icec n o a number be

'4
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bins equally as illustrated in Figure :3. If an input falls

- 1
nt:o the k bin, tne output is :he value Qk corresponding

to the center of the Ktn bin so that each input is rounded

q off to the center of the bin into which it falls. A uniform

Quantizer has all its bin widths equal. Nonuniform

quantizers allow different bins to have different widths.

_ In the Adaptive Recursive-IDPCM data compression

system, the quantization strategy is to choose the quantizer

" -. levels Q. so that they minimize the mean-square-error. Thisb1

error is given by

n f iI
- i2 (x) d xe= I (X - Q.)P1 d

where x I  < xI < ... < xn and K Q are

decision boundaries and the quantizer output levels,

respectively, and P(x) is a probability density function of

differences. Considering Figure 24, the histogram of the

" -differences, let F(x) represents the number of differences

which have values equal to x., then the density function

- ~?(x,) is equal to

F/ ?(X < < Xi4 < iX
P~~x.) = ilm (

X-0

.- [-f we choose AX = i (because values of subsamples are

tntegers), F(x) is approximately eaual to the probabilitv

density function P x)

-'44
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quantizer input range

X1 X2  X 4

bin 1 bin 2 ibin 3 bin 4

~2.02Q3 Q4
auantizer output levels

Figoure 23. Uniform quantizer.
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Taking a partial derivative of Equation w w I

respect -o Q, gives

__e -2 (X - Q.)P(x)dx 0 16)
i i

-- : = . XP (X) dx -)

P (X) dx

x
T1

in order to solve two unknown variables Q. and X.

we also take a partial derivative of Equation i with

respect to X.

- (X - Q. 1 ) P(x)dx + (X -ai )rx' = 0,

Qx +X -a-
A 2.

".- -X.. .5-- . .

and as a result

(X(X - Q )2 P(x) - 0 (18

X - = Qi- X (i9

-rom simultaneous Equations 17 and 19

X ' d

X (X)dx

v - , OX

*x%
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optimum quantizer output levels are determined. Figure 25

s.ows a half range of 3 bits quantizer input and output.

3.3 Adaotive Recursive-!DPCM Process

The equaticns of the Adaptive-Recursive-IDPCM are

Pij = /4(Pj + n/2, i + n/2

° i - n/2, j - n/2 +

i - n/2, j + n/2 + Pi + n/2, j - n/2 )

interpolation

when on interlaced field (22)

]-. " h i, + ni2 i, j - n/2 )

when on scan lines

quantization d.. Z(P.. - P. .) (23

reconstruction P = P.. + d.. 2

where n is the number of pixels by whi:ch subsamD es a7e

separated. in Adaptive Recursive-!DPCM. e s:bae s-

is selected equal to the number of o:xes -

original :mage is sampled. Figure 26 sno---s e -

tn ehere is a 5:1 subsampling of image -:xei 3

LO
'Jr



_____ uantizer in-ut range

X 0 X1 X2 X3

3.4 12.6 35.4 68.6
j1 24 7 52 I110

Ql Q2 Q3Q4

guantizer out=put levels

Figure 25. Non-uniform quantizer.
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S=subsamples to be transmitted
+, position of original pixels

. 0 = interpolated pixels

. . -Figure 26. First set of interpolation of an 8 x 8 pixels
subimage.

" i-4
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+ + + + +-
Scan Lines. o i + . o • interlaced

. .. .. .. . .F0I ds
4 -'. + . + + .

* subsamples to be transmitted
o - first set of reconstructed pixels
-- second set of interpolated pixelsM position of original pixels

Figure 27. Second set of interpolation of an 5 x 8 pixels
.'- subimage.
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ine, and 8:1 subsampling of image lines. The first set of

:erpolation is shown by arrows.

With th e a-,ve equations, :ne interpolation, :he

subimage classification, and the quantization, the adaptive

data compression can be conducted in two schemes.

.. The bit rate assignment of each subimage is based on

the measure of subimage activity

r4 bits -> first set of differences Ti C..

bit rate 1-3 bits => second set of differences

assigned -3 bits => first set of differences T2<C. <:.

to each bits => second set of differences

subi-ao2e -2 bits => first set of differences C < T

L0 bits => second set of differences

(25)

where TI < C.. indicates high detail, T2 < C.. < Ti, average

detail; C < T2, low detail, C.. is equal to .ij (8), or

a ij (10), or S .j (12), and a.. and 3 are calculated from

the first set of differences. However the reconstructed

image does not show very satisfactory quality. The problem

is that those subimages classified into class I or class 2

were finely reconstructed (e.g., the feather, the girl's

eyes, etc.); however, the subimages in the class 3 were

poorly reconstructed (e.g., the hat, girl's shoulder. etc.).

On the other hand, if we look at the histograms of the



second set of differences in Figures 28 and 29, we find tha:

a large number of difference data has zero or neariv zero

values. This implies that the data compression for

subimages in classes I and 2 is still inefficient. Of

course, we could adjust thresholds to classifv more

subimages into class 2 and fewer subimages into class 1, but

the improvement would not be very notable. We noticed that

in the Recursive-IDPCM method, the differences are

calculated and quantized at each recursion. If we can

decide the quantization level at each recursion, the data

compression will be efficient. This leads to the second

scheme of adaptation.

2. The differences are quantized adaptively at each

,-.~ recursion and bit assignment is based on Equations 10

and 12. The quantization bit assignment is shown in the

following relations.

bit rate for the 4 bits Tl < C.

first set of 3 bits (first recursion) T2 < Ci Tl

difference. 0 bits C. <

quantization (26)

Bit rate for the 3 bits Tl < C.

second set of 2 bits (second recursion) T2 < C T

difference 0 bits C. K T2

quantization (27)

4W 0
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I.;here C.. can be ecual to a,4 (10) or .. (12).

- 4hen a subimase size is 8 x 8 .:xe's, .oossible bit

ass-_ rnments on a subimag-e are shown in :igure 3C. The

Adap:tive-Recursive-IDPCM system diagram is shown :n

Figure 31.

3.4 Performance of the Adaotive
Recursive-IDPCM

The Adaptive Recursive-IDPCM data compression method

has been simulated on the PDP 11/70-IIS image processing

system in the Digital Image Analysis Laboratory. The result

shows that a further improvement to the Recursive-IDPCM has

been achieved. Comparing the two reconstructed images in

ri Figures 32 and 33, it can be seen that in the reconstructed

image which was compressed by Recursive-IDPCM, the detailed

.egions such as the girl' s shoulder, the edge of the hat

were jagged and her eyes, eyelash, and the feather were

blurred; however, in the reconstructed image of the Adaptive

.Recursive IDPCM, this type of degradation is much less in

evidence even with a lower bit rate than used in the

Oecursive-.DPCM. But in some simple regions of :he

reconstructed iage by the Adaptive Recursive-IDPCM method,

degradations are still noticeable, such as the too of the

-girl' s hat. t is because of the not-very obvious

distortion in simple regions that a large number of bits can

L;
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Figure 30. . assignments for an 8 x 8 subimage.
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- :Classifier! _

and transmi-
ij ---->.Buffer --interola-. Adaptive tter _

input tor quantizeril

IiJ

Coding

S I *1-our-put

+
Buffer nterpolator: P..

Decoding

Figure 31. Adaptive Recursive-IDPCM system block diagram.
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be saved for detailed regions which are very sensitive to

numan eyes.

The dfferent pa rition of the original image was

tested bv dividing an image into different sizes o

subimages. The following table shows he relation between

the size of subimages and the number of subimages in each

class (Table 1).

The smaller the subimage size is, the larger the

number of simple subimages will be because the correlation

between the nearest pixels is higher. As a result, the

difference values will become smaller and the bit rate for

quantizing differences can be reduced. On the other hand,

the overall bit rate was increased because the image had to

be sampled more densely. However, a very g'ood reconstructed

image was obtained with the bit rate 0.546 (Figure 34).

When the size of the subimages is too large (e.g., 16 x 16),

the subiect quality of the reconstructed image shown in

Figure 35 is not very satisfactory, although a slight bit

reduction has been obtained. This is because there is not

much correlation among too coarsely subsampled pixels. 7or

t:.e image used in this simulation, a 8 x S subimage is a

suitable size. Generally, the selection of optimum subimage

size for adaptive data compression schemes depends on the

statistics of the image data.

i(%
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.- Table I. Number of subimages.

Three Classes of Subimage
(number of subimages)

!Subimage
Size Low Detail Average Detail High Detaill

!16 x 16 313 372 339

8 x 8 2870 844 382

4 _ x 4 10,317 3241 2826

,

. L.



One problem wh .c h sh oulId b e poointed out s5 ta

although the subjective quality of the reconstructec -:n a 8e

has been improved by using the adaptive scheme, :'e o tc -

tive quality represented by RMSE ( 2) has not been ach--eved.

For example, i n Fi .g u re 32, Recursive-DPCM, he BP 11 -s

0. 3577 and the RMSE is 0. 0081-8; i n Fi-;g ur e 36, A da p -iv e

Recursive !DPCM, the BPP is 0.3561 and the RMSE is 0.00907.

- or the same bit rate, the Adaptive Recursive- IDPCM has a

slightly larger RMISE than the Recursive-DPCM. But it has

been pointed out [ 11I that quantitative measures of image

f id eli tyv which have been developed ar e not perfect.

rherefore, our evaluation on the Adlapt:ve Recurs:.ve--DCN

& method is based on its subjective measure.
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.' CHAPTER 4

. .. COMPRESSION OF COMPUTER TOMOGRAPHIC PROJECTTON
• BY THE ADAPTIVE RECURSIVE-IDPCM

SIt has been pointed out [!2] that the projection

matrix of computer tomographics contains a great deal of

redundant information. Therefore, the projection matrix is

,compressible. The compression of tomographic projections

-. using the DPCM method has been studied ([12] In this

., .thesis, a new approach of compressing tomographic projec-

II

tions using the Adaptive Recursive-IDPCM is introduced.

U" A projection taken along a set of parallel rays is

, ,."called a parallel projection , two examples of which are

%* ,-

' shown in Figure 38, and a projection along parallel rays in

-a certain angle is calculated by the function

,. .'€Ps(x) = f(x y)dy

where f(x,y) represents a two-dimensional image pixel value.

rfh A projection matrix is also depicted in Figure 39
and will be compressed. It has also been pointed out [ 12]

tesishe amount of redundancy appears to be strongly

dependen upon the angle of projection, the redundancv is

highest near the angles of 0g , 90 and 10. Because of

c et h8

2*

.' . .-
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Fi.gure 38. Parallel projections.
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Figure 39. Projection matrix.
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63

-is zharattertstics, an adaptive data compression scheme

seems to De more suitable.

A 102 x _' projection matrIx :n Figure was

- obtained from a 125 by 125 image shown in Figure 40, and i

was a 102 x I14 matrix in Figure 42. o simDliyf program-

ming the scalloped ends of the projection matr x were

trimmed before encoding, producing a rectangular matrix.

*" The obtained rectangular matrix was compressed by the

AdaPtive Recursive-IDPCM method discussed in Section 3.3.

The methods of calculating a projection and a back

projection can be found from references [12 and 13]. The

reconstructed image quality in Figure 42 is improved, which

can be seen by comIaring the image in Figure 42, with the

image in Figure lOc from the reference [12]. However, the

reconstructed image even without data compression is

distorted, as shown in Figure 41. As a result, the

reconstructed image with data compression does not have

satisfactory quality although some improvement has been

achieved by using the Adaptive Recursive-IDPCM method.

$.P



CHAPTER 5

CONCLUSION

in this thesis, we have discussed the fundamentals

of data compression as well as details of the Adaptive
MV

Recursive-IDPCM data compression method. In order to

implement adaptive schemes, several subimage activity

classification algorithms were tested, and the

classification using the absolute value of difference was

considered to be the best. The optimum quantizer was

designed to minimize the quantization error based on the

mean-square-error criterion. Especially when the

* differences were quantized adaptively at each recursion, the

Adaptive data compression method performed more efficiently.

Compared with the Recursive-IDPCM, we have seen that the

subjective quality of the reconstructed image using the

adaptive scheme has been notably improved. As is the case

P. for the IDPCM system, the Adaptive Recursive-IDPCM system is

also Less sensitive to channel error than th- DPCM system.

Although the encoding and decoding complexity are slightly

increased, the Adaptive Recursive-IDPCM can still be easily

"mplemented for a real-time system.

64
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65
it is mentioned in the introduction that image data

-  comoression methods are basically categorized into two

asses. One class is data compression in the transform

domain, and another class is data compression in the spatial

domain. in the transform domain, many transform coding

Sa-gorithms achieve high performance, small sensitivity to

fluctuation in data statistics, but their hardware

"' complexity is high. In the spatial domain, the predictive

methods are generally easy to implement, but they are

sensitive to data statistics. The Adaptive Recursive-iDPCM

system seems to have both the advantages of predictive

coding methods and of transform coding methods. Real-time

implementation of the Adaptive Recursive-iDPCM method 4s the

suggested step for future research so that this method can

actually be tested.p
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ABSTRACT

The turbulent atmosphere degrades images of objects viewed

- through it by introducing random amplitude and phase errors into the

optical wavefront. Various methods have been devised to obtain true

images of such objects, including the shift-and-add method, which is

examined in detail in this work.

It is shown theoretically that shift-and-add processing may

preserve diffraction-limited information in the resulting image, both

in the point source and extended object cases, and the probability of

ghost peaks in the case of an object consisting of two point sources is
discussed. Also, a convergence rate for the shift-and-add algorithm is

". established and simulation results are presented. The combination of

shift-and-add processing and Wiener filtering is shown to provide

excellent image restorations.
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CHAPTER I

INTRODUCTION

Imaging through random media is a problem with applications in

a variety of disciplines. It arises in medical ultrasound imaging

where the random medium is biological tissue. It also occurs in wave

propagation through the ocean where there are inhomogeneities due to

temperature variations and the presence of biological material. In te

atmosphere, turbulence arising from temperature variations creates

random effects in images obtained through ground-based astronomy.

In each case, the resulting images have a characteristic ]ra*.'

or "speckled" appearance. This presents special difficulties in ina;e

restoration because the degradations are random in nature, and if we

think in the context of linear systems theory, we are limited to

information about the average point spread function oniy. One method

developed to counter this problem, specifically for the case of

ground-based astronomy, is the shift-and-add method (Bates and Cadv,

1980; Cady and Bates, 1980), which will be examined in detail in this

dissertation.

Since the degradations produced by the atmosphere are random in

. nature, Chapter 2 is devoted to characterizing statistically the

intensity of an optical wave which has passed through the atmosDhere.

Although the literature is by no means unanimous in its choice of an

C1

.. W . .
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appropriate probability distribution for intensitv, the lognor:al

distribution is heavily favored, both by theorists and experimen-a.-

ists. and we will present a physical model and experimental ev:_r-

support its use.

in Chapter 3. we discuss typical modes of astronomical

imznt--s,orz exposures, long exposures, and speckle :nterfereretr.--

and also review some of the major advances in obtaining more

infcrmation from such images. Among the algorith"s to be consir:ere:

are speckle holograph}', Fienup's iterative algorithms, Knox-Thompson.

and shift-and-add.

Since shift-and-add is such a simple and easily implementei

a cr~:hm , the Question of whv it works ratura''v occurs. Th

question is analvzed in detail in Chapter 4, h:h constj:utes tre

major original contribution of this d.ssertat; on. 1%e ,:er:.e e

comnbned point spread function for atmospnerc cezrazator a3r:

shcft-and-add processing, address the probab,>:tv 0 error or

"nost peaks, examine the case of extended ot-ect :a-:r , arc

determine the rate of convergence of the algorithm. Cur resu.ts :r

K - this chapter indicate that the shift-and-add method applied toc a ser.es

of short exposure images may allou dffraction-imi:ed :nfornation tc

be preserved.

in order to test the performance of shit-and-add processcn;

and thus verify our analytical results, we have simulated atmosr e---

turbulence degradations, since no real data were a3a1iable. ,e

the two algorithms used for this purpose in Chapter ". The firs,

g
;-; : -;. .., .. ...,p- . ...r.¢ .. -.. . .. . ... . .. -



,ierv t n alcor-tr.rn nich considers phase

:.5ei'3 s cn".. ne s secuen~v -odfiied this scheme to include

-e iscus 7neneration of cegraded images by

silated nceraded imace with the point spread functions

napier 5. e tnen appiv shift-and-add processing alone
m

i"-w :in:h:natcn of sh:ft-and-add processing and Wiener filtering to

e ~- obtainin; excellent restoration results. As a caution

1:no excess~ve cla:ms for the performance of this processing,

--te trat :re simulated images are noise-free; however, the combined

a results of ChaDter 4 and the simulation results of

_r .r:-c ate that :ne sntft-and-add method ts an effective and

.=emented anproach to restoring images corrupted by

-tstrert t rbuLence and oernaps, other random degradations.

%1
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CHAPTER 2

OPTICAL PROPAGATION THROUGH THE ATMOSPHERE

;We are all familiar with the twinkling of stars as we observe

them through the earth's atmosphere. This phenomenon is due to random

phase and amplitude shifts in the optical path between the star and the

viewer's eye. These shifts are induced by atmospheric turbulence, a

condition primarily caused by temperature inhomogeneities arising from

the action of winds and from heat rising from the earth. Since

refractive index n is dependent upon temperature, these temperature

binhomogeneities give rise to regions with randomly varying refractive

- index, which in turn result in the amplitude and phase shifts mentioned

above.

0In ground-based astronomy, the viewer's eye is replaced by a

telescope, and because of the finite time required to record an image,

- the random phase shifts produce a "speckle pattern" as the image of an

punresolved star or point source. (The term "speckle" is borrowed from

laser speckle because of similarities in appearance and in some

statistical models of the two phenomena, and it refers to a granular

structure in the image.)

Since the amplitude and phase shifts induced by the atmosphere

. are random, we wish to characterize them by their statistical

properties. in particular, we want to determine the distribution of

4



intensitv (or irradiance), since that is the quantity which is

typically measured.

2.1 Justification of Lognormal Intensity

Statistics for Speckle

;e have chosen the lognormal model for intensity, as it is the

one supported by the majority of the literature (Tatarski, 1961;

Lawrence and Strohbehn, 1970; Korff, 1973; Fried, 1966; deWolf, 1969).

However, this model is by no means unanimously agreed upon, and a good

bibliography of the alternatives has been compiled by Fante (1975).

Since the lognormal distribution is relatively unfamiliar, we have

summarized its relevant properties in Appendix A. In this section, we

will present a non-rigorous physical argument for lognormal intensity

statistics and will also discuss some of the pertinent experimental

% evidence.

2.1.1 Physical Grounds for Lognormal Intensity Statistics

According to Strohbehn (1968), we will assume a laminar model

of the turbulent atmosphere that consists of a large number N of slabs

oriented perpendicular to the propagation direction and will derive the

statistics of the phase and amplitude of an optical wave at the pupil

of a telescope or optical system. We will depict this model in Figure

2.1, where s is the source, r is the receiver,A is the amplitude of

the optical wave at the source (with phase assumed to be zero), A and Lb

are the amplitude and phase at the receiver, L is the optical

path-length, d is the (random) width of the ith division of the

a,.0

II V-

a;2 , 
-' % . . . '
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Figure 2.1. Laminar model of the turbulent atmosphere.
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th
optical path, and n. is the refractive index of the i slab. The

N, refractive index n. is actually time dependent and may be written

ni = n + in.

where n is the mean of all the n., the refractive index of the
I-* 0 1IIG0

atmosDhere without turbulence, and L.n. is the varying portion of n. due

to turbulence. Also, several assumptions are made. First, it is

assumed that we are dealing with line of sight propagation with r

located in the turbulent medium. This is the condition of ground-based

astronomy as opposed to that of a satellite looking down through the

*" atmosphere. Even stronger, we are considering only a straight line

path from source to receiver; that is, ignoring contributions from

scatter at the receiver. The second assumption is that the wavelength

is much shorter than d. for every i. This implies that we may use

geometric optics. Third, we assume that Ln. is very small compared to

16

no . More specifically, Ln./n o is on the order of 106. The fourth

assumption is that turbulence is homogeneous and isotropic, which

allows us to use this essentially one-dimensional model.

We now consider the amplitude A at the receiver. The following

derivation is extremely simplistic, and it is now thought that all

distortions of the optical wavefront (including those which cause

amplitude or intensity fluctuations) are due to random phase shifts.

In the case of intensity or amplitude fluctuations, phase shifts which

occur high in the atmosphere cause the various portions of the

distorted wavefront to travel in slightly different directions, thus

S %



resulting in interference. This interference results in the observed

amplitude or intensity fluctuations (Lawrence, 1976). We shall,

however, proceed with this simplistic view of amplitude or intensitv.

First, we define R.. the reflection coefficient for amplitude
th th

at the boundary between the (!-I) and the i slabs for normally

incident licht:

reflected amplitude
incident amplitude

'--:ni ni _ I
-Y -- ni ni _ I

n An -n - Ani

0 1 0 -
•n o + an i + n o + Ln i I

An i A Ln i

0 i-

which is very small due to the third assumption in our model, so

subsequently we shall ignore all reflected light. Thus if A i-I is the

amplitude of the wavefront incident upon the boundary, the amplitude of

the transmitted wave is

A A. -R.Ai-' i-i 1 1- i

- (I - R.)A.
i:i-I

* ., We shall denote

. M.l- -M

.. ,

- . .. . . . . .. .. . ~ ". .



.. .. " and recall tha M. is random due to dependence on An. and An.,. So if

we start at the source s with an amplitude of A , the light hits the. irst slab, and the amplitude transmitted to the second slab is MA

Thi.s process continues for each slab so that the amplitude at the

receiver is

.....A A.. .. .. I O

Taking the natural logarithm,

I r logA logMN + . + logM 1 + logA °

-, *" where we may, without loss of generality, assume A = 1 and drop the

last term. We then assume that the logM. meet the requirements for

application of the Central Limit Theorem. One such set of requirements

(Papoulis, 1965), although not the most general, is that if we let x. =

logM

a. The x. are independent,
N 1

b. / -> as N -> 00,

c. !(x)api(xi)dx i is finite for some a > 2.

- Therefore, for N very large, logA is (approximately) Gaussian, which

implies that A is lognormal. We are, however, primarily interested in

.: the statistics of intensity I, since that is the quantity typically

"~ .g measured. Intensity is related to amplitude by

L I A 2

* .I

- % ..%../,pw", % % ',, %j , -. -.-,,.- .- , .. .- -. ..,,, .. . . ... . . ..0 " " " .- --- " ", - ' " .. - " --.-". -... ..-' -' -... .. .



or

log = 21ogA

so that iog' is also (approximately) Gaussian, and i s lognorma11v

distributed.

.e now turn our attention to the statistical distribution of

phase at the receier. Since the phase at s is assumed to be L. the

phase ' at r is si.mply the sum of contributions from each slab

N
H*' L .

4-. 1

N
2" ' d./X.

where , is the wavelength in the i interval which varies due to -nl

the fluctuating portion of the refractive index. We let '0 be the0

wavelength for propagation in the atmosphere (refractive index n in0

the absence of the turbulent layers. Then for the t layer

n. -- ,. 3o
1 1

# so
r N

= 2-, di/(niX)

i=l

2 N
d /n..

0 i=l

But n. n + ln., so

-'

1*

IJ.,a ',-," -%:J - " ,' ""','"", .".' - .." r,, .. .. - - % . -

" -" "" v. - ' , ,',;- _ , ,.' '.,-.''..',.',il,*. , ""'"" ,"," '" "." ""- " -" " ' " "."."- "-." '- . "''



2_ N d.

0 -o

i l. .,ono' .=1 1 0 _ i ,n

2- N d.i

n 1

From the third assumption in our model,

1

no K< I,

1 0 n0 0

n

n o

L d .(I - An/ n )2

• n 1 1 oo

o 0 i=l

N N
= ----- 4 d d An.

ono i=l I n i=l

Now we let k be the wave number corresponding to . and note that the
0 0

sum of the d. is equal to L, so

k L ko  N

0

* o d..

The constant first term of this expression is always present due to

propagation through the distance L whether or not one is dealing with

atmospheric turbulence. The fluctuating (image degrading) portion of

i -- ":, which we will denote by . is
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N

no  i1 1. 2.i

0

We again assume that we may apply the Central Limit Theorem to the

random product di-ni, so that for N very large, t is approximately

Gaussian where

" e ei(k oL/no
¢+")

We have now completed our simplistic physical justification for

assuming lognormal intensity statistics as well as our determination

that the fluctuating portion of phase at the receiver is Gaussian, and

we will now consider some of the relevant experimental results.

42.1.2 Experimental Confirmation of Lognormal Intensity Statistics

There has also been considerable effort to determine the

correct statistical model for amplitude or intensity by experimental

measurement. Summaries of these efforts are available in Fante (1975),

Strohbehn (1971), and Roddier (1981). Strohbehn (1971) reports that

one of the first careful experiments, a measurement of the variance offlog-intensity, was made in the Soviet Union in 1965 by Gracheva and

'. Gurvich. Their measurements agree well with those predicted theoreti-

I cally using a lognormal model for small (< I) values of a10g1. Ochs

and Lawrence (1969) later measured the variance of log-amplitude and

concluded that their data were in better agreement with a lognormal

t. model than with a Rayleigh model for amplitude, which would imply that

intensity is better described by lognormal statistics than by negative

exponftial statistics. (This Rayleigh model is due to an assumption

.4
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that the real and imaginary parts of the electric field are bivariate

.Gaussian with zero covariance. See Goodman (1984) for a derivation of

- this result in the context of laser speckle.)
-

Unfortunatelv, as Hevde (1963) and Barakat (1976) have noted,

the lognormal distribution has the unusual property of not being

uniquely determined by its moments. (We have presented a proof of this

property in Appendix A.) Therefore as Barakat (1976) notes, it is not

valid to predict a lognormal probability density function for intensity

or amplitude simply based on the measurement of moments such as

2 variance. This casts much doubt on the experimental results reported

above and also upon many of the others recorded in the literature.

:More recently, careful measurements have been made of the

combined telescope-atmosphere modulation transfer function (MTF) for

the speckle interferometry process. This transfer function has also

" been theoretically obtained by Korff (1973) using the lognormal model

(although considerable numerical evaluation of his result is necessary)

and by Dainty (1973) using a Gaussian model for complex amplitude, an

approach equivalent to assuming a negative exponential intensity

P idistribution. Chelli et al. (1979) have presented experimentally

obtained MTF's for infra-red stellar speckle interferometry and have

found them to be in good agreement with Korff's model. Alme et al.

(1979) have also experimentally determined the telescope-aLmosvnere W.

and have found their results to be in better agreement wi:, Yor:'s

model than with the Gaussian model. These exDer-menra. es-. --

to the validity of assuming a lognormai c:s.r...
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Although the lognormal distribution for intenstv seems to nave

more theoretical and experimental support, the negat:ve exponential

distribution is still widely used in calculations appearing in the

literature. This is due in part to the fact that Goodman (i9S) has

developed an extensive collection of analytical results using this

distribution in connection with laser speckle. Also, Dainty (l984) has

noted that the negative exponential distribution becomes a better

assumption as seeing deteriorates, and Lee, Holmes and Kerr (1976) have

claimed that it is a valid assumption at least in the absence of

turbulence. Some years earlier, Strohbehn (1968) commented that the

Rayleigh distribution for amplitude, and thus the negative exponential

distribution for intensity, is valid for "tropospheric beyond-the-

S.horizon propagation or in line-of-sight propagation when the turbulent

medium is a small slab and the receiver is far from the slab." This,

however, does not describe the situation for ground-based astronomy.

Certainly, the main advantage of using negative exponential statistics

rather than ognormal statistics is that it allows one to more easily

achieve analytic solutions to many of the problems arising in astronomi-

ca' imaning. We shall, however with one exception, use the lognormal

d~str~bu*:on for all of our calculations in subsequent chapters.

Ir



CHAPTER 3

EEIE' OF SPECKLE :LAGING

At this poirt, we have stated that the atmosphere degrades

"mages of obiects viewec through it by distributing a point source such

as a star into a speckle pattern, and we have determined a statistical

model for the intensity of an optical wave which has passed through the

atmosphere. We now wish to discuss the previous work that has been

done on the problem of obtaining true images of objects viewed through

the atcosonere.

Th'ts problem has received considerable attention, especially in

the last fifteen years since the advent of speckle interferometry. in

the remaander of this chapter, we will review some of the major

advances in speckle imaging. In section 3.1, we will briefly discuss

short exposure images followed by comments on conventional long

exposure and speckle interferometry in sections 3.2 and 3.3. Then

sections 3.4 through 3.8 will be devoted to short reviews of various

techniques used to extract more information from the output of speckle

interferometry or from the short exposure images themselves. There

are, of course, many other techniques which will not be covered in this

.L chapter, and we refer the reader to Dainty (1984) or to Bates (1982)

for a more thorough review.

I-.
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3.1 The Short Exposure !mage

A short exposure or "instantaneous" image refers to an image

for which the fluctuations of the atmosphere may be considered to be

t frozen; that is, the exposure time is on the order of a few hundredths

of a second. We shall consider such images in the context of a linear

systems model (Figure 3.1) and thus write the following equation

i(x,y) = o(x,y) * t(x,y) (3.1)

where i(x,y) is the short exposure image intensity, o(x,y) is the

object intensity, t(x,y) = a(x,y) ** p(x,y) is t-he combined

atmosphere/telescope point spread function, and ** denotes convolution.

This equation may be equivalently expressed in the Fourier

domain bv

I(u,v) = O(u,v)T(u,v) (3.2)

where 1(u,v) and O(u,v) are respectively the Fourier transforms of the

image and object intensities and T(uv) is the combined

atmosphere/telescope transfer function. Since we are dealing with

astronomical imaging, it should be noted here that although Equations

L (3.1) and (3.2) are written in the spatial and spatial frequency

domains, it is more appropriate to interpret x and y as angles of arc

-" -l
. and u and v as angular frequency, that is, arc sec

Thus our problem is, given i(x,y) (or equivalently, I(u,v)), to

- - determine o(x,y) or the best possible image of o(x,y) given our optical

svstem. in the short exposure case, one may not simply use the point
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7System-

Point Turbulence Distorted Image
Source Wavefront
Object

S o(xy)~~b Atmosphere Optics /X )r0( y
(Telescope) a(x,y)% p(x, y)

psf: a(x,y) psf: p(x,y) -o(x,y)*t(x,y)

i Object Zmage
Intensity Intensity

A (5)

Figure 3.1. Linear system model of image formation through the atmos-
i phere. -- (a) Pictorial description of image formation-

and (h) Block diagram of the linear systems model of image
formation.



I. spread function t(x.y) or the transfer function T(u.v) to restore the

image because due to the action of the atmosphere, t(x,y) and T(u,v)

are random, and information is available only for the average

quantities, Kt(x,v)> or <T(uv)>, This would imply that some form of

averaging of the short exposure images is necessary. In section 3.2,

we will discuss one form of averaging, the long exposure image, and see

that it also has serious drawbacks in terms of loss of high frequency

information. We will see that a better approach is the shift-and-add

algorithm of section 3.8, which consists of averaging properly

registered short exposure images and retains information out to the

diffraction limit.

3.2 LonQ Exposure Imaging

Conventional long exposure imaging may be regarded as a sum of

a series of short exposures, so the governing equation for this process

in the Fourier domain is as follows

<(u,v)> O(u,v)<T(u,v)> (3.3)

where <.> denotes an ensemble average, <I(uv)> is the Fourier

transform of the long exposure image, and <T(u,v)> is the long exposure

transfer function.

Earlier analyses of the long exposure transfer function were

performed by Hufnagel and SLanley (1964) and Fried (1966), and Fried

has shown that long exposure images retain substantially less high

frequency information than do the individual short exposures, thus

yielding a blurred or smoothed result. Intuitively, we may see this by

i "%
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. reca!lins that T(uv) is random due to atmospheric effects and may thus

be positive or negative (or perhaps complex-valued) at high

" :recuencies. Summing the individual T(u,v)'s, as in Equation (3.3).

will then result in suppression of high frequencies, so that even f

T(u,v)> is known, one cannot adequately reconstruct o(xy) due to this

lack of high frequency information in the image data.

.. For further discussion of the long exposure transfer function

t---". and determination of its functional form, see Fried (1966), or Hufnagel

and Stanley (1964) or the review articles Dainty (1984) or Roddier

, '. (1981).

- .. 3.3 Soeckle Interferometrv

, It was to combat this loss of high frequency information that

Labeyrie (1970) introduced the technique which became known as speckle

interferometry (Gezarie, Labeyrie, and Stachnik, 1972). Where long

exposure imaging is equivalent to summing a series of short exposures

and thus their Fourier transforms, speckle interferometry consists of

the addition of the squared magnitudes of the short exposure image

transforms (i.e., spatial power spectra) as follows

1(u'v) < K (u,v) 12>

1 I0(u,v)12< 1 T(u,v) 12>

" o(uV)<IT(u,v) (3.4)

where Il(u,v) and D0 (u,v) are respectively the image and object average

2
(spatial) power spectra and 1.1 denotes the squared magnitude of a

127 complex-valued quantity. This averaging of T(u,v)l 2 which is always

,.' 'S -



a non-negative quantity, prevents the loss of high frequencies, which

was the main drawback of long exposure imaging.

Korff ,i973) has derived an analo",ic expression for - T(u'v):-,

based on loonorma' intensity statistics, which agrees closely with

Fried's results (Fried, 1966). However, this expression requires

considerable numerical evaluation, which limits its usefulness. Daintv

(1984) has shown that a good approximation for <IT(uv)!K> is

<IT(u,v)2> <T(u, v)> + kT(uv)

where <T(uv)> is the long exposure transfer function, T (u,v) is the

diffraction-limited optical transfer function of the telescope, and

k < 1 is a constant inversely related to the number of speckles in the

image.

r.. ,Now, assuming that information about the transfer function

-<... <,T(u,v)l-> is available, either from a reference star (point source)

or from one the theoretical derivations mentioned above, %o(u,v) may be

recovered from Equation (3.4). Inverse transforming yields the average

spatial autocorrelation

<Rs(X,y)> = F-{Oo(UV)}

= <i(x,y) 60 i(x,y)>

*3 where eO denotes autocorrelation.

The limitation of this method is that one obtains only

autocorrelation or power spectrum images rather than true images of the

object. Phase information is lost, and as is noted in Oppenheim and

AN -- -



Lim (194) this information is generally more important than ampl, t de

•- information for signal reconstruction. Bates (1982) has presented a

comprehensive review of what has become known as the "phase prob~em,

the inabilitv (in general) to uniquely determine an oblect o(x.v) frot

its power spectrum. In certain special cases, however, such as a

centr:e-svmmetric object, the Fourier transform is purely real and

" determination of o(xy) is possible. Also, other useful object

information, such as the distance between two point sources (e.g.,

double stars) or an estimate of the spatial extent of the object, may

he recovered from the autocorrelation data.

" gSince the introduction of speckle interferometry in 1970. much

effort has been centered on methods of recovering an object from its

autocorrelation or power spectrum, and we will discuss several of these

algorithms in the following sections.

I-.,13.4 Soeckle Holography
The technique of speckle holography (Bates, Gough and Napier,

1973; Gough and Bates, 1974) demonstrates that the object o(x,v) may be'A reconstructed from interferometry data, provided an unresolvable

V reference object (point source) such as a star is present. In thisIcase, following the notation of Dainty (1984), the object may be

Vrepresented as a sun of two parts

o(x,y) s(x)6(y) + o1 (x-xl,y-yl)

where S(x)6(y) is the Dirac delta function denoting the reference

object and o1 (x-x1,y-yl) centered at (xl,Yl) is the object of interest.

J,



if x, " 3x '2 and v > 3v /2, where x and v are the extent of ol (x,,')
.0 1 0

:n the x and v directions, respectively, then the spatial autocorrela-

tion R(x,y) separates into three distinct parts

R (x,v' = o (-(x+x ),-(vv l ) +

[ ( .xo" 1 + o , X "oX

0 ((x-x )(y-yi))

That is, the central component of R (x,y) consists of the autocorre-
0

lations of the two parts of the object, and the outer components

consist of their cross-correlations. One of these outer components

will be the correctly oriented object of interest and the other will be

a 1800 rotation, so the object can be reconstructed within this

rotational ambiguity.

Practically, the object may not always meet the separation

requirements x1 > 3x0 /2 and Y, > 3v /2 even when a point source is

present, so that the parts of Ro(x,y) are not completely distinct. Liu

and Lohmann (1973) have suggested a procedure similar to that of

speckle holography in which they utilize the fact that the long

exposure image does contain low frequency phase information. This

information is incorporated into their algorithm by using the long

exposure image as a mask to select the correct components of R (x,v)
0

and eliminate autocorrelation terms.

* 'a .



3.Soeckle !,lasking

Reiated to speckle hologr-aphv is tine speckle masking tecnniqut

de~ebo~eJ b%- Aeipzelt ;%eigelt, 1977; Weigelt and '-1rnitzer, 1983), wno

hnas suggested tzat it may be especially usefu7 for imaging double

stars. Temajor difference between speckle holography and speckle

mask :ns is that in the former, an unresolvable reference object is

required to be present while in the latter, each speckle image is

preprocessed nonlinearly to create a synthetic reference object.

lo implement this algorithm, one first calculates the average

image triple correlation

x V

whnere (m *m )is the masking vector, e., in the case of ima-2no a

dobestar, (m m ) is the separation which may be obtained fromI;efrmtvdt.Wigl a hncmue correction term

(Weigelt and Wirnitzer, 1983), which allows the calculation of the

object triple correlation

from Equation (3.5). The object o(x,y) may then be reconstructed

provided that (m mr was properly chosen to give

x y

xe; -.



3.6 Knox-Thomroson Method

Knox and Thompson (1974) have proposed a method that involves

the autocorrelatlon of the Fourier transform of the speckle images

rather than the image power spectra. The algorithm calculates

<I(u Vl)7*(u 2 v2)= O(U=,V )O (u,,v,)<T(u I  )T*(u, )

: == O(u. v)O*'(u+Au,v+gv)<T(u, v)T (u+.u. w-.A).

where Au a u2-u1 and Av = v-v I are small compared to the correlation

•'- length of I(uv). Denoting the phase of O(u,v) by t(u,v) and the phase

o f T(u,v) by e(uv), we may write

u V, )I(u .v,)> a IO(u,v) IO(u+eu,v+Av)

* exp(i[t(uv)- (u+Au v4-Lv)])

*IT(u,v) T(u+Auv+Av)'

-exp(i[B(u,v) - 6(u+Au,v+A v)]).

.i (3.6)

. _ Dainty (1984) has shown that the phase difference [5(u,v)-6(u+u,v+.\v)]

0, so that the phase of the right-hand side of Equation (3.6) is

approximately [O(u,v) - (u+Luv+Av)]. Thus we may generate a grid of

phase differences for the object and may obtain the relative phase for

each point in the Fourier transform of the object by summing the phase

differences between it and an arbitrary reference, say, the origin.

- Since the modulus of the transform is available from the interferometry

- data, object reconstruction is then possible (within a position

iambiguity since only relative phase may be computed).

2kjZi ,I
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3.7 Fienun's Iterative Alorthms

Fienup (1978, 1979) has suggested an iterative approach to

obtain object phase information from the modulus of the Fourier

"- - :- transform O(u,v) , which is known from speckle interferometrv. His

approach, called the error reduction method (Figure 3.2) because the

mean-squared error decreases at each iteration, is a modified version

.of the Gerchberg-Saxton algorithm (Gerchberg and Saxton, 1972) and

" consists of simply changing the object constraints in this well-known

method.

Beginning at the k iteration with the object estimate

-' ~ 0 k'-') this estimate is Fourier transformed, yielding 0kuv
~1 '' :" kU,v)Iexp~i6k(U,V) ] . The Fourier domain constraint consists of

@ replacing 10 (u,v)< with the known modulus 1O(u,v)!. The quantity
k

-O(u,v)'exp[i k(Uv)] is then inverse Fourier transformed producing the

image Ok(X,y), which is then forced to obey the spatial domain

. ~- constraints. The principal spatial domain constraint is

, - non-negativity, although other a Driori information about the object

may also be included, e.g., we know the object autocorrelation from

speckle interferometry and the object diameter cannot exceed half the

extent of the autocorrelation. Thus the new object estimate

Ok(xy). constraints satisfied

Ok~1 (x~y)

0, constraints not satisfied

i-*

% %
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.." Satisfy 1 Satisfy

O tje' Fourier
Constraints Constraints

. o (x,y) '(u,v) -o (u,v)/e *a, V)

.2I Fiure 3.2. Fienup's error reduction method.
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is formed. This entire procedure may be s:ar-: -7

(u,v) or a random t,(u.v) if a better estimate -s _nava.

p in oractice, Fienup has found that atnoj.. c-

initially rapid, it soon becomes extremely slow, requiring an

impractical number of iterations for a good reconstruction.

To combat this problem, he has developed the input-output

.* - approach (Figure 3.3) in which the new object estimate is a

modification of the previous one

ok(x,y), constraints satisfied

o °kL(x y) =

.... (x.y) - ao.(x,y), constraints not satisfied
k k

where a is a constant. He has further found by experimentation that

the swiftest convergence is achieved by periodically varying the method

of forming Gk1 (x,y) after every few iterations.

3.8 Shift-and-Add

- Unlike the methods previously discussed, the shift-and-add

algorithm and the related method which will be examined in this section

do not attempt to reconstruct the object from its power spectrum orF: . autocorrelation or to use other information about the Fourier modulus,

.mage separation, or image extent which are made available by speckle

interferometry. Instead, they attempt to obtain a true image of the

object directly from the short exposure images.

Shift-and-add is an extension of a method previously developed

'by ,nds. ,orden and Harvey (1976) (or Worden, Lynds and Harve , 1976),
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Fi gure 3. 3. Pienup' s input-output. method.



Srealize: ,.at eac2 sDeckle of a snort exposure image is itself a

~storted ia ~ a: tne object. Their procedure involves the identifi-

cation an s,:erps:tcn cf the brightest speckles, thus creat*in an

, j estn ate ,: e object

According to Bates (1982), this procedure is limited by tne

M fact that many celestial objects are so faint that a typical short

exposure image contains few speckles, and he and Cady (Bates and Cady,

um.i 1980; Cadv and Bates, 1980) have extended the method to compensate for

this problem. In their approach, each short exposure is shifted so

that its brightest speckle is located at the origin, and all such

shifted images are summed, thus the name shift-and-add. Assuming that

< h~sprocessing is a'-so carried out for a reference star, tne

.-,- sh -ant-add imaze of the object of interest may be deconvolved using

the shlit-and-add image of the reference star as a point spread
f~uncr Lon.

The beauty of this method is in its simplicity and ease of

im~lementation as compared to the methods previously discussed, and

according to Bates (1982), it may be digitally implemented in real

t~me. Further improvement in the output image has been obtained

(Bates, 1982) by a method called adjusted shift-and-add, in which each

pixel is multiplied by the value of the brightest pixel before the

summing operation, and Bates and Robinson (1982) have devised a

* slightly more complicated version of shift-and-add. which they have

found useful in ultrasonic imaging.
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Ie, however, will restrict ourselves to the original, sir-.-le

- ~version of the algorithm and will present a theoretical analysis of the

method and various simulation results in the following chapters.

.IT
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* I CHAPTER 4

ANALYSTS OF THE SHIFT-AND-ADD ALGORITHM
FOR LOCNORMAL INTENSITY STATISTICS

The simplicity of the shift-and-add algorithm described in

section 3.8 leads us to ask why this method forms an improved estimate

1 itt of the object. This question has previously been addressed in some

UZ detail by Hunt, Fright and Bates (1983) for negative exponential

statistics. Here we shall present an analysis (which draws heavily on

the earlier one for notation and modelling) using the lognormal

in:ensi:v statistics which were justified in Chapter 2.

To facilitate our discussion, we will now adopt the standard

mathematical model of the speckle process. We are changing notation

from that of section 3.1 to be more consistent with existing

shift-and-add literature. This model assumes that image exposure time

is so short that the atmospheric amplitude and phase variations are

essentially frozen and also makes the assumption of isoplanaticity,

i.e., the assumption that the atmospheric point spread function is

s shift invariant. With no loss of generality and to simplify notation,

we shall restrict our analysis to one dimension. We denote the ,th

1 speckle image of the object f(x) by

s (X) - h (x)*f(x) + c (x) (4.l)
M m m

31
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_ ~ where m is a time index, h (x) is the m short exposure speckle point
m

spread function, * indicates convolution, and c (x) is a general, m

contamination term that includes all other degradations, i.e.,

recording noise, system nonlinearities, photon noise.

Within this framework, the shift-and-add process is easily

described. It consists of finding the maximum value of each spatial

image and the spatial coordinate ', at which it occurs, translating the
m

image by $ so that the maximum value is now located at the origin of
m

7% coordinates, and summing all such translated images. For M speckle

images, the shift-and-add result s(x) is expressed by

M

s(x) I/M , Sm(X + ) (4.2)
m=l

With this model established, we proceed to explore our original

question: why is s(x) a better estimate of f(x) than are any of the

individual frames s (x)?

We first consider this question qualitatively. According to

Bates and Cady (1980), the brightest portion of each speckle image

s (x) is likely to be a distorted version of the brightest portion of
m

f(x). Thus because of the linear nature of the degradation model and

of the shift-and-add process, superposition of distorted versions of

the brightest portions of f(x) necessarily implies the correctly

registered superposition of all other parts of f(x).

4.1 Derivation of the Point SDread Function

SNow we perform a more rigorous analysis of the shift-and-add

,k method by considering the case of a single point source (Dirac delta

. . . . .. , r -- - ,

A.-
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- function) object and finding an overall point spread function for the

degradation plus shift-and-add processing. We will at this point

ignore the contamination term c (x) so that Equation (4.1) becomes

s (x) h W).
m m

Thus the overall point spread function h(x) is

A h(x) = s(x) = l/M s m(x +  m) = l/M i h (x + M)

m=l m=l m

as is obvious from the linearity of the method.

- Following the derivation in Hunt, Fright and Bates (1983), we

introduce a change of notation

sm(x) sm(x + M),

i.e., the am(x) are simply the speckle images translated so that the

maximum value is found at the origin. This leads to the shift-and-add

I! result

s(X) l /M I am(x).
m=l

Ii At each fixed x, this is simply a sun of M random variables, where we

note that for xl very small, correlation in the images necessitates

that ore(x) -am(O), while for lxi larger than the correlation length of

the speckle process, C (x) and a (0) are effectively independent.
Am m

Therefore, for large M,

M
lim s(x) - lim l/M . a (x) -> EC (X)la (o)]
M - M- m=l m m m

I-"
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where E[.] denotes expectation, and we will assume M large enough that

lim s(x) E[om(x) C(O) ]  (4.3)

5. in the following calculations. We also define for future use the

quantity snax

ma x

s = LIM ](0)max mm

or for M large, we may assume s Eax

Again, following the notation of Hunt, Fright and Bates (1983),

we let

I =m (0)

, .. = (x).

As we are assuming lognormal intensity statistics, I is governed by

the probability density function

P(i )  exp
11 1

and similarly for 12. In this expression, log denotes the natural

24 logarithm (base e), and li and c are respectively the mean and

4'. variance of the normally distributed random variable log I.

To calculate the expectation in Equation (4.3), we need the

joint density function for I and I which we will assume to be1 2'

jointly lognormal:



p(I II,) ex[ % ) \0 )-. Oi (

(4.4)

where o is the correlation coefficient for the associated normal random

variables log I~ and log I,,. We have made such an assumption because

it is necessary in order to achieve analytic results although we are

well aware that it is not generally valid to do so simply given that

t~i - the variables I and I2 are both marginally lognormal. Also we note

that the x dependence of P and of 1j2 is not explicitly stated in

Equation (4.4), and we will comment further on this later.

Then with our previous assumptions, we have

P(I2 I)

jjigj_,j)D p(1911  -=1g l)192

-02g~u 1 Z /l0gl 2)

and we may write the desired expectation

0

[Qo I -U 1) 2 2 1* 2- 2 Io,1 1Z

OV~cTT~)2(1-n~

(4.5)



This integral is evaluated in Appendix B, giving

To give some intuitive feel for the expression, we will

evaluate it for some extreme values of the parameters. Also needec for

this evaluation are the following relations (see Appendix A) for any

lognormal random variable I:

and

2 -' 2

2 'I(e~ -1

--ere as before

=E[ log II

2 var~log I].

.~st we consider the case where 12 and I~ are completely uncorrelated.

:'calig ht =a1 0 and 12 a C(x), this is simply the case of ,x'

>> C. This corresponds to the parameter value c =0. Thus Equation

4.6) becomes

which is exactly what one intuitively expects.



Next we consider the case of 12 and I perfectly correlated,

i.e., x: 0. This corresponds to the parameter value = F For

Ithis case. it is also completely reasonable to make the further

assumption that 'i = 1, and o a2  Then evaluation of Equation .

velds

m ~E[212i] = I

which accords exactly with intuition.

At this point we observe that Equation (4.6) is entirely

specified by parameters associated with the normal distributions of log

f , and log 'W e shall assume that the speckle images are spatially

stationarv, or at least wide-sense stationary, an assumption actually

valid only near tne origin (or only locally), which implies a constant

mean and variance

" <I,> = <i = ( I>

which in turn implies

Having made this assumption, our further analysis will be strictly

valid only in the region of x 0 . Since we are particularly

*&,.~ -
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.nterested in this region--to see how closely skx) resembles tne

original object f(x)--our results should yield the desired information.

Returning to our notation of m (C) and a (x, rather ,,an andm 3 m m

we now nave

.x) (0)] = m (O)Oexp[ -o 2(-z,'21

= a (0)<Il) exp[V 2  (4.7)

and our next step is to relate = 0(x), the correlation coefficient of

log (O) and log C (x), to r(x), the correlation coefficient of a (0)
m m rm

' and (x). By definition.
m

cov[ , ,]
r'X, =-

E[I. i ]-E[II. E[ 2

111

so we w-'l now determine the quantity E[ Ii,]. We make the same

assumption that I and !2 are jointly lognormally distributed as was

1£made in the calculation of E[I. I,]. Thus

E'Ll i 1 ] = i 121 P(I2,I )dI,,dI

0 0

f (1o1 2  .

2io 02 0o 21-p
2

t This integral is evaluated in Append:x B, giving

P4

* - -- - - . -
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I I ] = )IQK!,e

so that

<IX 
'~ 

I<I ><I,>[e - -" ]

r x

<12><1j > Ve I

Making our same stationarity assumptions, which imply that C =

we obtain

r(x) =

e -

r so tz"at

S= (x) = l/c log[l + r(x)(ec 2  1))

Now

C 2 2 -[e.

so

2

0= log[ + Cj/<1>']

and after some algebraic manipulation

9

"opR(x) - lor<I>'
. , 0(x) - ' - I

logR(o) - log<I>

where R(x) denotes autocorrelation. Assuming ergodicity, R(x) R (x).

the spatial autocorrelation of the speckle image.

"L. Substitution in Equation (4.7) and further algebraic

simplification yields

" .o. .* -
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"2.

* F log'I>-

" , I IogRs (M-log<l>

Ir 2~ogc M,0'-IogRs(O)-logRS(xI

SX ) - LgR s (O)-log<l> "

and since we are implying that M-> by using the expectation, we ha'e

te desired result

lrn S(X) E[-m(x)' m(O)1

- [ og<I i2
Smax LogRs (0)-Iog<I>"

[ lOgR s (0)_log<RI>2

x R (x)

The obvious question at this point is how to characterize R (x)

in order to give this complicated expression some meaning. There

F appear to be three options available. First, one may actually measure

R (x) from the speckle images. We had no real data available but have
5

included plots of s m(x) and the corresponding Rs (x) taken from images

simulated by the method of section 5.1 in Figures 4.1 and 4.2.

Korff (1973) has developed an expression for <!T(f) -> which is

the Fourier transform of <Rs (x)>. Calculating <IT(f) 2> and inverse

Fourier transforming is our second option. Unfortunately, evaluation

of < T(f)i > requires extensive numerical computation and specific

N. %.
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parameters for the atmosphere and optical system, so we shall consider

our Lnird possibility.

This third option for characterizing x) is an apprcx,:-ao I n

t o K o rff 's result developed by Dainty ( 1975). D aintyP h as clIa-,7,e d th"Ia t

K Korff 's result is in "broad agreement" with that obtained' by the

simpLer m~odel

~ :Tf)) T(f) + kT D(f)

* ~ nere T(f) , is the squared modulus of the long exposure transfer

..nct_-on, D()is the diffraction-limited transfer function, and k < 1

is a constant depending on atmospheric and telescope parameters. As in

zu, right and Bates (1983), we inverse Fourier transform this

I equ:ation, obtaining

CR (x)> I(x) + kKa(x)

w-ere ix s the long exposure component of R (x), i.e., the
S

autocorrelation of the seeing disc; a(x) is the diffraction-limited

component of R (x), i.e., the Airy disc of the telescope; and K is a

norma-liZing factor required to force <R (0)> < I->.

§~S



*
44

.P Then from Equation (4.8),

.'. ot<! > log<l>

1im s(x) -1. ,k . max

g" 1 > - log[1(x)+kKa(x)]

x [1(x) + kKa(x)] log<-> log(I>

(4.9)

The first term of this expression is a constant, so diffraction-limited

behavior will occur in the second term depending on the relative

magnitudes of 1(x) and kKa(x); that is, if the diffraction-limited

Ka(x) is large enough compared to the broad smooth function 1(x).

This discussion, together with Equation (4.9), completes our

characterization of the point spread function of the shift-and-add

process.

4.2 Analysis for Two Point Sources

The next degree of complication in this procedure is obviously

to consider an object consisting of two point sources. The behavior of

the shift-and-add process is unchanged although now the possibility of

ghost peaks exists, and it is the probability of such an occurrence

- that will be the major focus of this section.

We first define our object

f(x) - a 6(x-x 1 ) + a26(x-x 2 ) (4.10)

where a1 > a2. Then clearly each speckle image takes the form

fr

* k



s (x) ah(X-X aInm x-x'

where we are again ignoring the contamination term. Shift-and-add

processing will allow objects to be resolved, each wit: a profile of

the form of Equation (4.8), if the distance x"-x , between the two

point objects is greater than the correlation length of the

diffraction-limited component of the speckle image. At this point we

define some notation

"r w = a/a,

1<i> = mean value of alh (x-x1 )

<I>= mean value of a2h (X-X,)

= w<i l

= variance of alhm(X-X1)

C 2 variance of a2h (X-x2 )
1 2 2

1* =w I
where of course we are concentrating our attention on the central

portion of each speckle pattern aih m(x-xi) where the speckle image may

be treated as a stationary random process with constant mean. With

this notation established, we"may use Equation (4.8) to define a

composite shift-and-add profile

!%

i?

HI
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Ss :og<l >-1og<ll>2
s.. max

S ~[ 2 O~Smx + ig<I2> - ogR (x-x]

iogog-> -21 g1>

log2

+ (ws max)

.4 ma °gSx1s

t [2 o w +2 ogs + iog<I > - logR5  (X -x,)]

Xl) i[<I>- log<>>

• "W (x - x )
s

This result is no longer valid when the point objects are separated by

less than the correlation length of the diffraction-limited component

of the speckle images. In this case, the point spread functions from

the two objects overlap and the simple lognormal statistics used to

derive Equation (4.3) are no longer valid. For the remainder of our

discussion, we will assume that the two point sources are separated by

more than the correlation length of the diffraction-limited component

of the speckle images.

4.2.1 Analysis of Ghost Peaks

gost tUnder this assumption, we will now carry out the analysis of

gosth peaks for the two point source object of Equation (4.10). As

L noted in Equation (4.11), the individual speckle images are of the form

s (x) ash (x-x + a h (x-x a1 > a'.m 1. m I 2 1
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'R-For th~e shift-and-add process to be carried out correctly, the maximum

value of s (x) should be the maximum of alhm(x-x). There are two ways
m In

Sthat this may be prevented from occurring. First, the sum of any two

speckles from a h (x-xl) and a2 h (x-x 2 ) may exceed the sum of the

* maximum of ahm(X-X) and any speckle from a2 h (x-x2 ). Intuitively,

one would not expect this to occur in any systematic fashion, since

* this would be completely unrelated to the maximum of a2h (x-x2 ). Thus

if this error occurred repeatedly, it would result in a general

randomness in s(x) rather than in a false peak. The second way that an

incorrect maximum may be chosen will result in a ghost peak if it

occurs repeatedly. This happens when the maximum of a2 hm(x-x 2) plus

any speckle from a h (x-x1 ) exceeds the sum of the maximum of

a hm(x-xl) and any speckle from a2 h (X-X2 ). The probability with which

this occurs will determine the relative magnitude between correct and

false peaks.

Therefore we will calculate this probability using the notation

of Hunt, Fright and Bates (1983). We let

z = maximum of ahm(X-Xl)

<12> a2

IF" wz = maximum of a 2 hm(x-X 2 )

r.v.(l) = a random variable with probability density

% %

%2.
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P(I) = exp
I1. ':F 20Z

a speckle from a hm(X-X ),

and r.v.(2), likewise.

1- e then define

u = z+r.v.(2)

i - v = wz+r.v.(l)

. The probability that the correct maximum of sm (x) will be chosen is

P [u>v] and the probability that the maximui of a 2hm(x-x9 ) will be

I chosen instead is P [v>uj = 1 - P [u>v]. (We are ignoring here the

possibility of two speckles adding together to exceed either u or v.)

Now, for each speckle image, both the magnitudes and positions

of z and wz are fixed. Also, given our assumption that the two point-

source objects are separated by more than the correlation length of the

diffraction-limited component of the speckle images, we may consider

r.v.(l) and r.v.(2) to be independent but conditioned on z. Thus

p(uv z) = p(uiz)p(vlz)

I
which from simple probability is

p(u viz) 'I ex [ -

' " 2r, C , (u-:)(v-w:) e p-

.We will now simplify this expression by recalling

<I1 > - mean value of ah (x-x)

<!2> , mean value of a.,h (x-x ) a

,.,~~d Cx ww'

% 1

V~ , %"% .,""%. ' ""' , "",'",, I,. . ,-" ." . , " ., . ..
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4 =variance of a,h (:-x

2 = variance of a-h (x-x.) =w-<
I., m

I: and for lognormal random variables

. '"" <I > =e'-* '

.e - 1], likewise for ,T,

'4 This leads to

4. C = IC

2 = 1 + log w,

so we set

12

an 2 1 4+ log w
~and

: [ log (= f)-Io] log (,--: u

-(uzvz) - 1 12

Then the probability integral of interest is

V U -

"] 1 f 1 r-[log(v-w)-u]2 -[log('-=' )1u]"Pex>u] 1202 -L exp dudv.

w.

21C v-wz ep2a 2  u

We first consider the case of w = 1, for which the integral is analytic-

ally evaluable. Then



P exex P.

and we make --e chanqe of varaabie

s =IoO=(v-Z)

t =lo(u-Z)

to obtain

A~rn'oic and U j~~[~ e [e~ dtds

and using the evaluation of the normal probability integral from,.

P = ilU e [I22 erf(zs- ]ds

Ive now let

f p-

The second integral is equal to zero because its integrand is odd, so

our result is P [v>u] = 1/2, which agrees entirely with our intuition.

The obvious question to address at this point is how fast this

probability decreases as w decreases from 1. Unfortunately, for values



- . - - e into. is a rr n r-w-t s

-S.-

and e tai, hae usa cha ngeri of vaale c~ nrcahes

- VZ

ane mingra teeslhagofarae

so~w = Wo)vw

tt

p -~ I I x .d

* valuation of the s integral yields ~ gwt(i

[u>v} ] exp t-, 1 + erf io~e .(I-) : d t
2av 2C 2

It-u]2

2a.127 20 2-

- ; e let p = - and obtain

*~ %v
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To avoid evaiuatlro. of 3 4cube tineg'r_, 1 e have used the

foliowing expression from Abramo.:tz and Stoun (19O) as an

apDrox mation for erf x:

,.f x _ (--,t - * a t- a,-, a-.t )e - e(x

%,.-here

t I-pX

ie(x) < 1.5 x 10 -

I p = .3275911

a = .254829592

a, = -.284496736

a 3 = I,4211374 1

a4 = -1.453152027

a- = 1.061405429

The integrand of Equation (4.12) is plotted in Figure 4.3, and the

integration results for three sets of parameters are summarizcd in

Tables 4.1 through 4.3.

The probabilities of selecting the wrong maximum seem

i ' unrealistically low, although they may indeed be realistic given the

'- relatively large separation between the original point sources that we

assumed in the modelling. However, we do in part attribute the low

probabilities to the absence of noise and nonlinearities in the

derivation and possibly to our assumption of constant means and

variances <I his essentially is an assumption of

iN,• I. , : , % - . . \ - -. , . ., . .
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• Table .. Probabilitv of selecting wrong maximum,:
average parameter values. -- Jii> = IZ.6;

_ = 27.1; and z = 243.55. < and
fof this table are the average alues of
the parameters (100 sets) supplied by Jon
F7reeman.

P (V > U)

7-Point
Second Max Gaussian

w wz Simpson's Rule Quadrature

'24'3.55 .500 .500

.99 241.11 .356 .356

•.95 231.37 .052 .052

.9 219.19 .0035 .0035

.85 207.02 .0003 .0003

1.8 194.84 .00003 .00004

.75 182.66 .000004 .00001

.5 121.78 .000001 .00001

-..t .P

1 N . p . , q- .- o ..
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Table 4.2. Probability of selecting the wrong maximur:
parameter values from a saturated frame. --
<I1> 15.72; oil= 37.55; and z = 255.

qP (v ~u)

7-Point
Second Max Gaussian

w wz Simpson's Rule Quadrature

1 255.00 .500 .500

.99 252.45 .375 .375

.95 2,2.25 .075 .0.7

..9 299.59 .0063 .0063

.85 216.75 .0006 .00059

.8 204.00 .000064 .000072

.75 191.25 .0000089 .000017

.5 127.50 .000001 .0000099

[. i"

it
j

........... .



Table 4.3. Probability of selecting the wrong maximum:

parameter values from an unsaturated frame. --

<I 1 9.55; oil = 16.44; and z - 218.00.

9P (v > u

7-Point
Second Max Gaussian

"-wz Simpson's Rule Quadrature

. 218.00 .500 .500

.99 215.82 .334 .334

.95 207.17 .0342 .0342

.9 196.20 .00166 .00166

.85 185.30 .0001 .0001

.8 174.40 .00001 .00002

75 163.50 .000002 .00001

5 109.00 .000001 .00001

I

-,
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- stationaritv which is in actuality valid only in a small region about

. the maxima z and wz.

In spite of these unreali -.ically low probabilities, we may

still draw the important conclusicn that the correct maximum will be

chosen in the majority .f f-ames and the shift-and-add process carried

out correctly even when the original point sources do not differ

greatly in magnitude.

t

4.3 Analysis of the Extended Object Case

1e now address the case of most practical interest, the case of

an extended object rather than a set of isolated point sources. We

then rewrite Equation (4.1) for this case
00

|s (x) = f(x-x )h (X )dx + c(x) (4.13)

v m j 1ml l m

as a convolution integral, again following the notation of Hunt, Fright

and Bates (1983). Ignoring the contamination term, s(x) is, for fixed

x, an integral of lognormal random variables h(X l) weighted by the

object itself, f(x-xl). Digitally, of course, this becomes a weighted

sum of lognormal random variables, or just a sum of nonidentically

distributed lognormal random variables.

Thus the relevant question is: what are the statistics of sums

of lognormal random variables? For the case of N independent random

variables, the sum tends to become Gaussian distributed as N approaches

infinity by the Central Limit Theorem. Barakat (1976) has investigated

this case, with the added assumption that the random variables are

identicallv distributed. His approach, as summarized below, is a

Z _
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specific case of a result obtained earlier by Cramer (1951). We

consider the sum

N
r

k=ik

where X are i.i.d. (independent identicallv distributed) random

variables, each with the probability density function

______°' -[logx -,"

P(Xk) e

0 otherwise.

Because the Xk are independent, we have

*kk

" var[X] = Nvar[Xk]

and for convenience we rescale as follows

Z. (Xk-E[Xk])
$/. K

YvarX

vvarX

so that

EtZ] - 0 and varZ - 1.

Also due to independence, the characteristic function of Z is

Ib,

:'<':: ; . .... . •.- ,; .' ... - ..:, v,:'.. v. -.- -.-.-. : .-. , .. .... . .. . . . ... ..-
,: = -.- ..: a~a¢i¢e*' - .' ,a , & ' €4¢, ' 7:. '<" g,;,.2 " ,, ,: ;r ; <-:-:'-" ;. V .... .' -5,*-.v -:.
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*i z
E e t z] _ ¢ ( t )  = [Z k ( ) "

where C

z k kt
(t) e k p(Zk)dz k

k -Cc

c (it)n< (Xk-E[Xk)>

r-n=O (varX) n.

.th

Thus, with representing the ith central moment of Z,

3 4
" 2 it 31'3 t.I 4  5/2 N

Cz4 (t) = (1 - - 3N3/2 + - + + 0(N-5)N
Z 6CN 244N

4 so taking the- logarithm off both sides and using the expansion

k
-* lo(-)=~ . 4 k+l s

No ki) k -) 7' -l <s_<
k=l

s - 1/2 s2 + 1/3 s

we obtain
3 4

t 2  i3t 4 -3C 4 -3/2
log t (t) - 2 - 2'/" + - t + O(N

-' and

t 2 /2 i t1
1t e ( + O(N-))

where
I3

Y = .-  is the coefficient of skewness.
1 3/2

*2

Fourier transforming yields

I PN(z) - eZ (l + - h 3 (z) + O(N- 1 )) (4.14)

'1/ v 7 6

I,%
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where hi(z) denotes the Hermite polvic nial z3 -3z. Thus for large

finite N, sums of independent lognormal random variables converge to a
N ,.-i/2

Gaussian probability density function only as ,, This result

should also hold qualitatively for non-identically distributed random

variables as long as the Central Limit Theorem conditions are met (see

Section 2.1.1).

Our problem is complicated further by the fact that our

lognormal random variables, h (x), arc weakly correlated as was

illustrated in Figure (4.2). We see from this figure that the

diffraction-limited portion of the autocorrelation is quite narrow;

indeed the width of the base of the narrow peak is only twice the

Ii extent of a speckle. Since Barakat's result is based on use of the

Central Limit Theorem, we assume that it would also apply (perhaps with

even slower convergence) for random variables which are only weakly

U correlated. This is due to the fact that variations of the Central

Limit Theorem do exist for dependent random variables (Lo~ve, 1950;

Serfling, 1968; Hoeffding and Robbins, 1948). According to Serfling

(1968), the assumptions required for these Central Limit Theorems are

in practice, not amenable to proof. It is further stated that many

experimenters feel that the Gaussian approximation is valid for

stationary processes which are observed for time (in our case spatial)

intervals, which are long in comparison to the correlation length of

the process.

We have assumed that our images are stationary, at least

locally, and have noted that the diffraction-limited correlation length

"I

'F
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Implicit in this calculation is the assumption of stationaritv of the

speckle point spread function and the integrated speckle images, which

we continue to emphasize is valid only near the origin.

Inverse Fourier transforming Equation (4.16) yields the

autocorrelation function R (x) in terms of the previously discussed
e

(section 4.2) Rs(X) = Rh(X) and the autocorrelation of the object

" e (x) R f(x)*Rh(X). (4.17)

As we noted, Rh(x) may be decomposed into a low frequency and a

diffraction-limited component

Rh(x) 1 I(x) + kKa(x)

and we now suppose that the object power spectrum may also be

decomposed into low frequency and diffraction-limited components

IF(u)1 2 = IF (u)12 + Fd(u)2

or in the spatial domain

Rf(x) - R1 (x) + Rd(x).

Substituting in Equation (4.17) gives us

Re (x) 2 l(x)*[Rl(x)+Rd(x)] + kKa(x)*R,(x) + kKa(x)*Rd(X).

[. (4,18)

Thus if the object contains a spatial frequency component out to the

diffraction limit, the profile of s(x) in Equation (4.15) may also

-4

,',i' J-.','-.. ,',' , ,. '." .- •. 'i.i,



contain a diffraction-limited component 
provided that the magnitude of

kKa(x)'Rd(x) is large enough relative to the remainder of Equation

. Addition of the correlation component due to the contam:na:ion

term c (x) may further obscure the diffraction-limited information.
M

Now we return to the case of a large object f(x) and assume a

Gaussian distribution for the speckles of s m(x). The analysis for this

case has been presented by Hunt, Fright and Bates (1983). As in

section 4.1, the conditional expectation E[1 2 1 1] is calculated;

however, the conditional density function now takes the form
I

P(1 2 1l) I 2 exp T [(12<Ie>-r(11<ie>)]-

"_r)
2  20e -r

where <I > and C2 are respectively the mean and variance of the
e e

integrated speckle pattern and

SRe(x)
r = r(x)

e

is the normalized correlation of the integrated speckle pattern. We

further note that r(x) is a zero mean correlation coefficient with
I,-.

'" r(x) < 1, and that the usual stationarity properties are assumed.

Evaluation of E[I 2'I 1 ] i gives

Re(x)
lim S (x) = <I > + - [S - <1 >]  (4.20)

e e C72 max e
e

where R (x) is characterized as in Equation (4.18) but with the
quantity e>2 subtracted because the correlation is required to be

zero mean. Thus

.!-
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"" ''. P (X) = (x)"[Rl(%)+Rd(X)+kKa(x) R (x)*kKa(x)*Rd x)-<Ie, (,),.i
e P-'I d

and if desired, one may also include the autocorrelation of the

. contamination term R (x). As before, we will obtain diffraction-~c

limited resolution if the magnitude of kKa(x)*Rd(x) is large enough

relative to the other components of Equation (4.21). in both Equations

" (4. l-) and (4.21), l(x)*[Rl(x)+Rd(x)) and kKa(x)*R (X) are smooth

func:ions and the useful information kKa(x)*Rd(x) will thus be found

riding on a broad background.

So, as noted by Hunt, Fright and Bates (1983), if R (x)
e

possesses a large enough diffraction-limited component and f(x)

conzains a strong point source, the linearity of the shift-and-add

process will reconstruct the extended object (on a background). Also,

a very strong point source should ensure that the maximum value is

correctly chosen for each sm(x). Such sources may be expected to occur

often in natural imagery, e.g., an unresolvable star near an

• 'astrcnomical object of interest or a glint on the wing of an airplane.

In Chapter 6, we present supporting simulation results for

shift-and-add processing of a simulated astronomical object with a

Ni nearby "star" and demonstrate that further improvement may be obtained

by Wiener filtering of the shift-and-add result.

4.4 Miscellaneous Results

In the remaind~r of this chapter we will examine other results

on te shift-and-add algorithm. In section 4.4.1, we will analyze the

N, quest-ion of convergence which is of considerable interest. Follouing

~~~~ %S*
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this, we will discuss some of the work of Bagnuolo (1984) in which he

1, examines the effect of nonisoplanaticity (i.e., lack of shift

invariance over the entire image) on the shift-and-add method.

4.4.1 Convergence of the Shift-and-Add Algorithm

In sections 4.1 through 4.3 we have analyzed the shift-and-add

method and found that it may produce an image containing

diffraction-limited information. In all of this analysis, it was

effectively assumed that an infinite number of images was summed which

"ii is, of course, not feasible in practice. Thus we are led to inquire

just how fast the shift-and-add algorithm converges--does it require

fve or five thousand summations?

To answer this question, we recall that for each fixed x

shift-and-add consists of summing M lognormal]y distributed random

r variables, where M is the number of frames processed. These random

variables are independent, since they occur in different frames; and

isince we are considering a fixed spatial position, we will also assume
p.

that they are identically distributed. Hence, Barakat's (1976) results

(as discussed extensively in section 4.3) apply directly. That is, the

sum of random variables approaches its limiting distribution as M
-1/2

We stress, as does Barakat, that this conclusion is valid only for

large M. We have observed in our simulations that convergence is more

rapid for small M, say < 10. However, this would be true even if M

convergence is valid.

We may see this same result another way, by considering a

"noise-to-signal ratio" for the sum of independent identically

N

[ '#' ".' , _r. .. ,. .- , - - ,. •. ,- 
--



dis:ributed lognormal random variables at fixed spatial position x.

That is, we are constructing a ratio of the spread about the mean to

the mean of the sum. For convergence, we wish this ratio to decrease

to zero. Following the notation of section 4.1 and ignoring

contamination effects, we have the sum

Ni

s(x) - , (x)

which has mean and variance

E[s(x)] = ME[m (x)] = M<Cm(x)>

var[s(x)] = Mvar[a(x)] = M<0(x)>2[eC

whr - c

where Z var[log C(x). Then our noise-to-signal ratio for the sum

is

N var(s(x)) VMm (x)e>J

-= E(s(x)) = M<a(x)> '/

The numerator of this quantity is constant, so the noise-to-signal

" . M_/2ratio decreases as M' , which agrees with our prior conclusion.

Thus we have determined that convergence of the shift-and-add

algorithm is slow; however, in our simulations (Chapter 6), notable

improvement has been achieved with sequences of only twenty frames. An

important conclusion suggested by this slow convergence is that it may

well be advantageous to average fewer frames and achieve further

deblurring by other techniques; for example, Wiener filtering, rather

than simply continuing to increase M.

".:.



4.4.2 Effect of Nonisoplanaticitv on Shift-anc-Add

For the entire preceding analysis, we have made the assumption

of isoplanaticity. That is, we have assumed tnat the image was formed

by passage of wavefronts from the entire object through one statistic-

ally homogeneous portion of the atmosphere, giving us a shift-invariant

point spread function. According to Dainty (1q75), it has been found

experimentally that this assumption is invalid for star fields or

larger objects.

In this case, Equation (4.13) becomes

SSm(X) = f(x')hm(x;x')dx' (4.22)

where we have ignored the contamination term c (x). The intuitive

,m

approach is to decompose hm (x;x') into a spatial sum of shift invariant

point spread functions

K

h m(x) h mj(x-x.)

* where K is the number of isoplanatic patches through which the object

Lwavefronts pass. One would then make convergence arguments allowing

the change of order of summation and integration in (4.22), yielding

L K
sM(x) a mj(X-Xj)

Then shift-and-add gives

s(x) - (X)-,. m
M= 1

' " , I ~M K.w 2 S ,X-

* S (x-x.)
m=l j=l mj j

K. . . ' -: ' ' -.. ..T -I .  . ' , . ., .., , j , .' . / , ' j " ., ,j -, - .. - . . . -. -, . . - . -. . . . . -.V'" -" - ','. 'a. efeg. lh , ! ,., .. " _ . , v - / - ' ' 4,a ""-"-"- .
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II

At tnis point the analysis becomes intractable because K is a random

variable depending on the step m. Therefore, another approach should

be taken in order to achieve any results.

Bagnuolo (1984) has addressed this problem for the specific

case of the shift-and-algorithm applied to imaging of double stars. In

-' an earlier paper (Bagnuolo, 1982), he has presented a slightly modified

s-ift-and-add algorithm and a method for calculating the intensities of

-he background, the two valid peaks representing the double star, and

,-, t-e accompanying ghost peak. Ratios of these intensities are then used

to compute the true intensity ratio for the two components of the

couble star. In his later publication (Bagnuolo, 1984), he has shown

:na7 his method is invariant to the degree of isoplanaticity. This is

bv no means a general theoretical result, but it may indicate that

nonisoplanaticity is not a serious problem in shift-and-add processing.

7I
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CIHAPTER 5

9
COMPUTER SIMULATION OF TURBULENCE DEGRADATIONS

In order to test the effectiveness of the shift-and-add

algorithm, especially for the case of extended object imaging, we next

performed simulations of the image degradations produced by atmospheric

turbulence. SerJes of point spread functions have been computed, both

for an algorit. teveloped by McGlamerv (1976) that considers only

phase perturtat :r2z of the optical wave and for a modified version of

this algorithm, which also includes amplitude perturbations. These

point spread functions were then convolved with a simulated object, and

the resulting series of degraded object frames were subjected to

shift-and-add processing and other restoration techniques, as discussed

in Chapter 6. In this chapter, we will examine the two algorithms for

computing point spread functions that we mentioned above.

5.1 Point Spread Function Simulation
for Phase Perturbations Alone

The first algorithm that we used for point spread function

simulation was one developed by McGlamerv (1976). In this algorithm,

he has considered only phase perturbations of the optical wavefront

since he claims that these are the dominant factor in image degrada-

tion. He also assumes, as is common (Strohbehn, 1968) that the

h ' Kolmogorov spectrum

".-- 70
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is a valid description of the spatial pcwer spectrum of the phase at

3 the receiver, where C is a constant related to turbulence strength and

wavelength and f denotes spatial frequency. With these preliminary

assumptions noted, we now summarize the algorithm.

Step one consists of generating a complex array of Gaussian

random numbers that are to represent the spatial frequency domain for

the phase of the wavefront. (Phase is assumed to be Gaussian

distributed, as discussed in Chapter 2, which necessarily implies that

it is also Gaussian in the frequency domain.) In step two, we multiply

-11/6the array by f the square root of the Kolmogorov spectrum. This

I factor introduces correlation into the point spread function, for

without it, one produces a random noise field rather than a speckle

pattern. The third step consists of Fourier transforming the array and

3 separating the result into its real and imaginary parts. Each of these

arrays represents a map of phase at the pupil of the optical system,

which we denote by d(u,v). In step four, we form the path length

difference map

d(u,v) = 2 A

where % denotes wavelength, and we note that this step is unnecessary

if one is considering monochromatic illumination. The intensity point

spread function is calculated in step five as follows

h(x,v,X) IFp(u,v)exp(i2d(u,v)/',) Y2



where p( u,v) is the pupil function of the telescope, ' denotes the

squared maznatude of a complex quantity, and F " refers to the Fourier

0transtorm. The final step six is not computed in the monochromatic

case. it involves forming the polychromatic point spread function

h(x,v) = k F(X)h(x,y.)

where k is a normalizing factor required so that the value of the

*'  transfer function at zero frequency is unity, and F(X) is a weighting

*function which depends on spectral distributions of source power,

* ,atmospheric transmittance, and the image sensor. McGlamery (1976) also

discusses other factors necessary for scaling in computations of the

w polvchromatic point spread function.
I

- In our simulations, we omitted steps four and six, and we

*varied the standard deviation of the Gaussian iterates in step one in

order to vary the strength of the turbulence, rather than changing the

constant C of the Kolmogorov spectrum. Furthermore, we ignored the

.- effects of the telescope pupil and set p(u,v) identically equal to

unity. Examples of point spread functions simulated in this manner are

shown in Figure 5.1. It should be observed that these point spread

functions are of greater spatial extent than they appear in this

figure. The outer edges do not appear because of a lack of dynamic

- range in the photographic process.

i%
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5.2 Point Spread Function Simulation including

Both Phase and Amplitude Effects

For the sake of completeness and also because amplitude

Uperturbations are important in the assumption of lognormal intensitv

statistics (see Chapter 2), we modified McGlamerv's algorithm

, - (McClamery, 1976) to include the effect of amplitude perturbations.

,According to Strohbehn (1968), the log-amplitude spatial power spectrun

-/3
is also proportional to the Kolmogorov spectrum f , and we know

from Chapter 2 that log-amplitude is also governed by a Gaussian

probability distribution. Therefore, simulation of amplitude effects

proceeds in much the same manner as the simulation of phase effects in

section 5.1.

rd Step one consists of generating a complex array of Gaussian

rar numbers that represents the spatial frequency domain for

• - -11/6
log-amplitude. In step two, the array is multiplied by f , the

square root of the Kolmogorov spectrum, in order to introduce correla-

tion. We then Fourier transform the array and separate the result into

its real and imaginary parts for step three. Each of these arrays

represents a map of log-amplitude, denoted logA, at the telescope

pupil. Using the phase map O(u,v), which is generated by the method of

section 5.1 and assuming monochromatic light, we complete the fourth

and final step of the algorithm, the formation of the intensity point

spread function

%-S
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h(x,y) = ,F- p(u,v)exp(logA + i*(u,v)

, 2
where as before, F ' denotes Fourier transform, indicates squared

Sma-nitude of a complex-valued quantity, and p(uv) is the pupil

function of the telescope which was set identically equal to unity in

all of our simulations.

Examples of the point spread functions simulated by this

procedure are presented in Figure 5.2. The phase variations in this

figure are statistically the same as those of Figure 5.1, so any

difference is due to amplitude effects. As we see from Figure 5.2, the

main effect that the amplitude perturbations have is a general blurring

of the point spread function, and therefore, of any image convolved

with it. This will be more clearly seen in Figure 6.3 of the next

chapter.

5.3 Effect of Setting One Pixel
Equal to One Speckle

The simulation of point spread functions discussed in sections

5.2 and 5.3 results in speckle patterns in which each speckle is

4represented by a single pixel. In reality each speckle has a spatial

extent on the order of the size of the Airy disc of the telescope

(Dainty, 1975), so what one is actually simulating by the above

II algorithms is integrated or averaged speckle. As we have assumed

- throughout that the intensity at each point of the speckle pattern is

distributed lognormallv, we have a sum of partially correlated

lognormal random variables. This is exactly the situation of section

.4, wnere the weighting function is equal to one. As in this previous

.*-* .;. . . .
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Figure 5.2. Point spread functions including both phase and amplitude
degradations. -- Phase is statistically identical to thatqof Figures 5.1a and 5.lb.

a. Phase corresponds to that of Figure 5.1a with severe amplitude

degradation.

b. Phase corresponds to that of Figure 5.1b with less severe ampl-'
tude degradation.
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Figure 5.2a. Phase corresponds to that of Figure 5.1a with" severe
amplitude degradation.

* igure 5.2b. Phase corresponds to that of Figure 5.1b with less sev'ere~
amplitude degradation.



analysis, we expect that this integrated or averaged speckle wiLl be

approximately Gaussian distributed when the number of random variables

averaged is large (Barakat, 1976). but will be better described by a

lognormal distribution when fewer random variables are averaged

- (Mitchell, 1968). As we are averaging over an area the size of the

Airy disc in this case, we would expect relatively few pixels to be

averaged, implying that a lognormal distribution is appropriate. In

our simulations, telescope effects were ignored, which is equivalent to

assuming an infinite pupil and thus a point source Airy disc. For this

case, one pixel actually represents one speckle; but in more realistic

cases, statistics of integrated speckle rather than simple speckle

should be used in simulations.

.*
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CHAPTER 6

RESTORATION OF SIMULATED 1MAGES

in this chapter we shall attempt to restore images degraded by

atmospheric turbulence using shift-and-add processing alone and then

combining shift-and-add processing and Wiener filtering (actually

pseudo-inverse filtering in the absence of noise) in order to confirm

our previously obtained theoretical results. Restoration will be

possible only if the derivations of Chapter 4 are correct, that is,

on!% if diffraction-limited information is indeed preserved by

shift-and-add. Otherwise, residual blur will be apparent in the final

results because of loss of high frequency information.

Using the methods described in Chapter 5, we have generated

series of twenty point spread functions (psf's) for varying degrees of

turbulence and have convolved these psf's with an undegraded image. "We

emphasize that in these simulations, no other degradations (e.g.,

photon noise, sensor noise) have been introduced, although they are

certainly present in actual imagery.

In a previous study (Hunt, Morgan and West, 1983), we have

described the simulation and restoration of degraded images using a

simulated silhouette of an airplane as the original image. However,

Bates pointed out that the use of such a large object with a small psf

is a contradiction of reality. In order to simulate a more realistic

78
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. situation. we nave used for our undegraded image a small circle at gray

ievel 11,.itn a dark (gray level 0) and a bright (gray level 192)

spot _n Lhe znterior. The circle is of approximately the same spatial

I extent as the smallest psf considered, and we added the interior spots

-" in order to test the ability of our processing to restore detail other

than the object outline. The undegraded image is intended to represent

a fairiy large astronomical object, and therefore, we have also inclu-

1k ded a "star" (point source) at gray level 255 in the frame in order to

(I allow us to estimate the overall psf of atmospheric degradation plus

shift-and-add processing. This psf is used in further deblurring after

shift-and-add. Our undegraded image is pictured in Figure 6.1; a

series of aegraded images with only phase perturbations (corresponding

to the Dsf's of Figure 5.1) is shown in Figure 6.2; and both phase and

amplitude variations (corresponding to the psf's of Figure 5.2) are

included in the degraded images of Figure 6.3.

1 6.1 Shift-and-Add Processinn_

ith series of degraded images at our disposal, our next step

is restoration, which will first be attempted by shift-and-add

processing alone. Figure 6.4 depicts the results of shift-and-add of

twenty images (corresponding to Figure 6.2), which have been distorted

by phase variations alone, and the shift-and-add results for both phase

and amplitude degradations (corresponding to Figure 6.3) are shown in

Figure 6.5. We note that there is comparable improvement in the case

of both phase and amplitude corruptions relative to the phase

It
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Figure 6.2. Object blurred bv convolution with psf's containl'n phase

degradations only.

a. Blur produced by psf of Figure 5.1a.

b. Blur produced by psf of Figure 5.lb.
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ri-t .a lrpouedb s fFgr .a

gire 6.:a. Blur produced by psf of Figure 3.1b.



.i~ure 6.3. Object degraded by convolution with psf's containing botn
I phase and amplitude degradations.

a.Bu rdce ypfo Fgr .a

a. Blur produced by psf of Figure 5.2b.



':1ure 6.3a. Blur produced by psf of Figure 5.2a.

PIzure 6.3b. Blur produced by psf of Figure 5.2b.



71 Ure O§.Shift-and-add results for the averaging of 20 ima-es

degraded by phase perturbationls alone.

a, S,-jft-and-add result for images degraded as in Figure 6.2a

b. Shif :-and-add result for images degraded as in Tgure 6.2b.



7iz~ure 6.4a.- Shift-and-add result for images degraded as in 7igure

6.2a

- > -e . b. Shif:-and-add result for images degraded as in Fiqure
6. 2b.



ui ure b.5. Shmft-and-add results for the averaging of 20 lra,
degraced by botn phase and amplitude perturbat~ons.

a. Shift-and-add result for images degraded as in Figure 6.3a.

b. Shift-and-add result for images degraded as in Figure 6.3b.
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Fi'jre 5.5a. Shift-and-add result for images degraded as in F'i-ure



degradation only case; and just as one would expect, the restoration is

better for milder turbulence.

p It is worthwhile at this point to note that although the gray

level of the "star" or point source is higher than that of the bright

- interior spot in the object, the bright spot is larger in area, and the

maximum value chosen from each frame by shift-and-add is a speckle

generated by the bright spot. This observation implies that

shift-and-add processing may well lead to a substantially improved

estimate of the object as long as there is a relatively small bright

area, not necessarily a point source, present in the object. Thus

shift-and-add may be useful processing for a larger class of natural

imagery than simply images of astronomical objects. One would expect

the registration of the images to be less accurate in such cases,

[' resulting in a more blurred shift-and-add image; however, as seen in

the following sections, the overall point spread function of the blur

may be estimated or measured and then removed by Wiener filtering.

We have further noted confirmation of our estimates of the

convergence of this algorithm as discussed in section 4.4. In a prior

V report (Hunt, Morgan and West, i983), we noted a comparison of

shift-and-add results for twenty and fifty frames in which we observed

no visible improvement in the fifty-frame result over the twenty-frame

result. This accords well with our determination that the algorithm

converges as M - I/2 (where we recall that M is the number of frames

averaged).

A
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Finally, we note that while there is considerable improvement

in the shift-and-add results over a single short exposure frame or over

a simulated long exposure image (Figure 6.6), there is still a sizable

- amount of blur present. The following sections are devoted to removal

of this residual blur.

O6.2 Determination of the Overall Point Spread
Function for Atmospheric Degradations

Plus Shift-and-Add Processing

In order to apply further restoration techniques to the

shift-and-add image, we must measure or estimate the point spread

function (psf) for the entire process. If a point source such as our

simulated "star" is included in the original object, the psf may simplv

be extracted from its shift-and-add image. This is the approach we

have used in our restorations; however, in cases of severe degradation,

subtraction of background blur from the psf is necessary.

We also used a Gaussian least-squares fit to the point spread

function in some restorations. This is because, in the limit of large
.1

M, we expect the point spread function to approach a Dirac delta

function (or very narrow function) riding on a broad, smooth function

as in Equations (4.18) or (4.21) and the following discussion. Thus we

are assuming a Gaussian form for this smooth function. This may be a

useful approach for estimation of the psf when an auxiliary point

source is not present in the object if one can find a valid method of

determining the variance of the Gaussian.

If there is no point source present in the object, it may also

be possible to estimate the psf from the edge response of the object

r _
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F'igure 6.6. Comparison of shift,-and-add and simulated long exposurez
U ~~images. -- Both were generated from a series of 2 m~

degraded by phase perturbations alone.

a. Shiflt-and-add.

b. Long exposure.
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,, Figure 6.6a. Shift-and-add.
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Tatian, 1965; Tescher and Andrews, 1972). This type of procedure will

work best if the object is fairly large, containing large sharp edges,

a fact which will limit its usefulness in astronomy. However, in this

case a nearby star is often present, as was assumed in our simulations.

6.3 Wiiener Filter Restoration

We now assume that we have obtained our desired point spread

function, whether measured or estimated, and proceed with the

deblurring. In our previous work (Hunt, Morgan and West, 1983), we

used both the Wiener and Cannon filters (Andrews and Hunt, 1977) but

* • subjectively determined that better results were achieved with the

. viener filter. Therefore, we shall use the Wiener filter in our

present restorations and shall employ the following form of the filter

H* (u,v)
W(u v) =iH (u ,v ) 2  o )

where H(u,v) is the Fourier transform of the psf, * denotes complex

conjugation, I. indicates the modulus of a complex-valued function,

Cf(u.v) is the object power spectrum, and C2 is noise variance. Wef n

have not actually measured or estimated a value for C but have simply

considered a constant which is varied to achieve the best restoration.

Also, we used the actual tf(uv) which we determined from the

undegraded image although in practice, this is not known and must be

estimated from the degraded image. Often, one would have some

information such as the expected object shape that will help in these

estimations.
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Now, letting S(u,v) represent the Fourier transform of the

s" shft-and-add image, our estimate f(x.v) of the object is

f(x.v) = F- 1 S(u,v)W(u,v)i

where as usual, F-I " denotes the inverse Fourier transform. In order

to achieve good results in cases of severe degradation, i.e., minimize

"ringing," we were forced to smooth the sharp edges between the images

and the zero backgrounds which were added as padding for the Fourier

transforms. We found this to be necessary both in the shift-and-add

image and the measured psf, and it was accomplished by multiplying the

images by wide Gaussians.

These restorations have been performed for the shift-and-add

images depicted in Figures 6.4 and 6.5, and the results are shown in

Figures 6.7 and 6.8. From these figures we can see that the Wiener

* fiit r has done an excellent job of removing blur left in the

shift-and-add images--the outlines of the object are sharp, and the

* interior spots have been well-reconstructed. It is important to note

here that this ability to reconstruct the original object may be

regarded as confirmation of the theoretical results of Chapter i--

diffraction-limited information is indeed preserved by shift-and-add,

at least in the absence of noise.

We have also performed Wiener filtering in a few cases with a

Gaussian least-squares fit to the measured point spread function (as

discussed in section 6.2), and one such outcome is shown in Figure 6.9.

Some blur still remains in these images, and we attribute this to the

I
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Figure 6.7. Wiener filter restorations of the shift-and-add ima~es
5depicted in Figure 6.4. -- Original image was degraded by

phase perturbations alone.

a. Wiener filter restoration of the image in Figure 6 .4a.

b. Wiener filter restoration of the image in Figure 6.4b.

I'

r

pi



0C,

zi2ure ~.a. Wiener filter restoration of the image in Figure t.4a.

| [j F:gure 6.-b. Wiener filter restoration of the image in Figure 5..

'rd4.o-f



-. - -- -ii'U- -! I.

Fipure 6.A. Niener fi~ter restorations of the shift-and-add images of
Figure 6.5. -- Original image was degraded by both phase
and amplitude perturbations.

a. Wiener filter restoration of the image in Figure 6.5a.

b. Wiener filter restoration of the image in Figure 6.5b.
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:~ue bta. Wiener fil1ter restoration of the image in 74-ure .

.-gure 6.b ,;iener filter restorati~on of tne irnate .n~r
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7~g~re.9a.Wiener filter restoratt-on with measured psf.

.igure 6.9b. Wiener filter restoration with a Gaussian least-squares
fit to .he psf.
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fact that only twenty images were processed by shift-and-add. As noted

in section 6.2, this Gaussian approximation should improve as the

number of frames processed increases. Even with this remaining blur.

the interior spots are clearly visible, and we have observed some

improvement over shift-and-add alone.

in practice, one would not expect such good results as obtained

in Figures 6.7 and 6.8 because of noise, lack of information about the

exact form of the object power spectrum %f(xy), possible "ghosts" in

the shift-and-add image and possible problems in obtaining the overall

*] psf; nevertheless, Figures 6.7 through 6.9 indicate that shift-and-add

prccessing plus Wiener filtering shows promise for restoring images

degraded by atmospheric turbulence or other random media.
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CHAPTER 7

CONCLUSION

In this dissertation, the task was undertaken to analyze the

shift-and-add method in order to provide a better understanding of why

it creates improved versions of images degraded by atmospheric

turbulence.

We first provided the necessary statistical framework and image

: "model for this analysis along with a brief summary of other imaging

methods employed in the presence of turbulence. Then, in Chapter 4, we

1 demonstrated that the result of shift-and-add processing of a series of

short exposure images may contain diffraction-limited information, both

in the point source object and in the extended object cases. We also

showed that the probability of error in such processing is relatively

low, although the results were obtained for a noise-free case.

Further, we presented a convergence rate for this algorithm which is

initially fairly rapid, but which slows considerably as the number of

"" images processed increases. This result suggested the restoration

" method applied in Chapter 6: use shift-and-add to average relatively

few images and achieve further improvement by another method.

In support of this analysis, we presented simulation results

which demonstrated the effectiveness of the shift-and-add method,

especially when combined with Wiener filtering. When one considers

94
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that these results were obtained by processing only twenty images, the

• -performance of the algorithm becomes even more impressive.

As a further note in support of shift-ano-processing, our

previous work (Hunt, Morgan and West, 1983) indicated that it is of

value in reducing the error in features extracted from turbulent

images. The specific feature extraction algorithm considered was

. invariant moments (Hu, 1962), and in almost all cases we found that the

moments of the shift-and-add processed images were lower in error than

were the moments of the unprocessed speckle images.

7.1 Suggested Extensions of this Work

The most important theoretical extensions to this work would be

eto remove the assumptions of isoplanaticity and stationarity, and

rederive the point spread function under these new conditions.

However, due to the extreme difficulty (or even impossibility) of

achieving an analytic result when these assumptions are removed, this

might well be a point of diminishing returns.

A further theoretical extension would be to repeat the analysis

with the addition of noise; however, in this case one runs into the
.4

problem of determining the probability density function of speckles

plus noise. The speckles are lognormally distributed, and the

lognormal distribution does not possess an analytic characteristic

function, so the density function of speckles plus noise would

necessarily be an approximation.
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It is likely that effort would be better spent extending this

algorithm to deal with practical problems facing its use in specific

applications, since the major theoretical results have been determined.

One such practical problem is that of obtaining a good estimate of

(u,v) for the Wiener filter, and it might well be worthwhile to

investigate the dependence of restoration quality on the accuracy of

such estimates. Another problem is found in astronomy, where one may

face extremely low light levels, say a photon or two per frame.

Therefore, in conclusion, we emphasize that such difficulties are

likely to be the most fruitful avenues for research on shift-and-add

processing.
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APPENDIX A

TiE LOGNORMAL DI !RIBLTION

In this appendix, we present some of the basic properties of

the lognormal distribution, as it appears to be generally unfamiliar,

and comment further on the property that the lognormal probability

density function is not uniquely determined by its moments. For

further information on the lognormal distribution, the reader is

referred to Aitchison and Brown (1957) or Johnson and Kotz (1970).

-e t.c-parameter probability density function of a lognormal

random variables X takes the form

p(x) 1 [ x]- ,(x > 0) (A-1)

where log X is normally distributed, log denotes the natural logarithm

(base e), is the expected value or mean of log X, and c2 is the

* variance of log X. Following Johnson and Kotz (1970), the nth moment

of X is

-r m - E[Xn, - e n  + 1/2n 0r (A-2)

Ile n

so that the mean is

w + 1c
E[X] - m = e

-. 9"7
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The central moments may be computed from the general formula

n/2
M, n

tm ' = - n/ Y (-l)J(r)w l/2(n-j)'(n-j-1) (3
(W-1) j=O

where

w = e

The distribution is unimodal, with

mode(X) = e

and

median(X) = ep .

Also, as 0 -> 0, the distribution tends to a normal distribution.

Analogs to the Central Limit Theorem also exist for products of

random variables. Just as sums of independent random variables are

approximately normally distributed under certain conditions, so under

similar conditions are products of independent random variables

approximately lognormally distribute-. For more specific statement of

the lognormal Central Limit Theorem and for extensive results on

estimation of parameters for a lognormally distributed population or

. data set, see Aitchison and Brown (1957).

We now address the property :hat the lognormal distribution is

not uniquely determined by its momen:s, a property of interest in

Chapter 2. In the usual case (Papoulis, 1965), if we know the moments

m of a random variable, we may determine its characteristic function
n

*W(u) by the following expression.

M%



(u) =1+ium + . . +--7) m +
n. n

where i denotes the square root of -1. Inverse Fourier transforming

then vields the probability density function. However, Heyde (1963)

and later Barakat (1976) have proved that this result is not unique for

the lognormal distribution. Heyde (1963) has presented another

distribution with density function

f(x) exp [Iogx-u) ]1exp21 {- 2 i sin[-ok(logx-uj)]} , x >0

(A-4)

where 0 < E < 1 and k is a positive integer, which he claims has the

same moments as the lognormal random variable X with the density

function p(x) of Equation (A-i).

To see this result, we consider the difference in moments of

the two distributions

I j xnp(x)dx - i xnf(x)dx n a 0, 1, 2,

0 0

,... n- [lo l
x exp - 2a sin[-1-.- (logx-)] dx.

v2,7 0'

We make the change of variable

L:~
-'-

;-v. V



-9.

zo

V =

giving

11. - ! - n
T= - I' e-'" " sin[ - y-vldy

C.-- I

=enU11/2n 2 .2 1
S e- l/ 2 (y -nC) " sin[ Iy]dy

27r

=0

because the integrand is odd. Therefore both distributions (where

actually f(x) determines a whole family of distributions by varying the

parameters £ and k) have the same moments.
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APPENDIX B

EVALUATION OF INTEGRALS

In this appendix, we evaluate two integrals from Chapter 4

which arise in the determination of the overall point spread function

of the shift-and-add process.

We will first evaluate the following integral

E[II 1Ip(I I )dI° [I!2 - j 21 2

0

,'" __ _ _ dl exD

-"- " 0 ,[- " I
U (B-I)

Expanding the exponent in Zquation (B-1) gives

(logI,=,J~jlogI, ~lj 2 ( Ij) ( 9i2

(gIo1)2 (2/( 2  oI 1
-)")

-2
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,,-here we have collected terms according to their dependence on io,

nuS Euation ( -l) becomes

P2 ~~ 11 { (oIl)22 ()
-::._: = c ,,._( _, , exp 2(1_z)

(logI) -2

X exp -IT)

1--
0 2(1-c')-

".,e now consider the integral portion only of this expression and let

c - (iogI2 V - 22/C 2 (logI -it iogI'
~dI?

,b: , . 2(1_0 2 )j d1

~(B-3)

To evaluate thus integral, we make the following change of variable in

Pe

t= log 1,

d',= e dt

Then

V2/C2 C1 2C

ttd-T exp 2

:": ( p.-
.:72-

3¢.,



which we evaluate by using Gradshtevn and I.' 1 p Q

it is stated tnat

exp[-p-x + qxldx =exp[-
2 'V- IP
4p~P

From Equation (3-4), we make the corresoondences

P1
'2~ (1-P 2

2

logl1  J.

22

2P 21 (-d1 (1-0

Thus we have

2 2w (I2(ID I~g

~ 2 I7 27)

and substitutino this expression into Equation (B-2), we obtain
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2 2)~
E 2 I ] = exp{ .2 +(C2,'I1)3log 1. 1 (C 1)22

5 = ~~~exp..,- 1 2'

- e now evaluate the integral expression [I1 hchi

needed In order to determine the correlar:on coefficient of 1 and 1-

This expectation takes the form

E~1 2I1] 1,)I 1 1 p(! 2 .I1 )dI d1 1

2 1

I--5

We make the chances of variables

log1 1 -Ii

and
!ogI-Uj,

02

and obtain

E[121] = e a lS+02t 2~dd

(B-6)

kP1

~-JC



ii or,

First we evaluate the t integral

exp J + t dt

by using the same formula from Gradshteyn and Rvzhik (1980)

exp[-p-x' + qx]dx = exp q  2: p 0
4 p  p

in this case, we make the correspondences

' 2 1

2(1-")

q = o + --

so that

p

" C( O 2 2

p" 2 (1-o-)

Then

I t 12iiTI 2) exp{ - =- s 2

Substituting in Equation (B-6) yields

exp {1 ,. +C 2(1-12)/2j -s "
"ILE[12II] - - -"exp(- (a+O,)s ds;

V21r

<1 > i 11 ( - (C ( oc')s~ ds (B-7)
2 ep
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which is evaluated as was the t integral with

pq +00

which implies that

WV'T/p v'7

q 2/(4p) 2 a2 + PC + P 2C /2
1 12 2

Then substituting in Equation (B-7) yields the desired result

E[I4. i <1I ><II )e
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